MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcoval1 Structured version   Visualization version   GIF version

Theorem pcoval1 22552
Description: Evaluate the concatenation of two paths on the first half. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
Assertion
Ref Expression
pcoval1 ((𝜑𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = (𝐹‘(2 · 𝑋)))

Proof of Theorem pcoval1
StepHypRef Expression
1 0re 9896 . . . . 5 0 ∈ ℝ
2 1re 9895 . . . . 5 1 ∈ ℝ
3 0le0 10957 . . . . 5 0 ≤ 0
4 halfre 11093 . . . . . 6 (1 / 2) ∈ ℝ
5 halflt1 11097 . . . . . 6 (1 / 2) < 1
64, 2, 5ltleii 10011 . . . . 5 (1 / 2) ≤ 1
7 iccss 12068 . . . . 5 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ 0 ∧ (1 / 2) ≤ 1)) → (0[,](1 / 2)) ⊆ (0[,]1))
81, 2, 3, 6, 7mp4an 704 . . . 4 (0[,](1 / 2)) ⊆ (0[,]1)
98sseli 3563 . . 3 (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ∈ (0[,]1))
10 pcoval.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
11 pcoval.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
1210, 11pcovalg 22551 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
139, 12sylan2 489 . 2 ((𝜑𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
14 elii1 22473 . . . . 5 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)))
1514simprbi 478 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ (1 / 2))
1615iftrued 4043 . . 3 (𝑋 ∈ (0[,](1 / 2)) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐹‘(2 · 𝑋)))
1716adantl 480 . 2 ((𝜑𝑋 ∈ (0[,](1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐹‘(2 · 𝑋)))
1813, 17eqtrd 2643 1 ((𝜑𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = (𝐹‘(2 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wss 3539  ifcif 4035   class class class wbr 4577  cfv 5790  (class class class)co 6527  cr 9791  0cc0 9792  1c1 9793   · cmul 9797  cle 9931  cmin 10117   / cdiv 10533  2c2 10917  [,]cicc 12005   Cn ccn 20780  IIcii 22417  *𝑝cpco 22539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7036  df-2nd 7037  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-2 10926  df-icc 12009  df-top 20463  df-topon 20465  df-cn 20783  df-pco 22544
This theorem is referenced by:  pco0  22553  pcoass  22563  pcorevlem  22565
  Copyright terms: Public domain W3C validator