MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcval Structured version   Visualization version   GIF version

Theorem pcval 16183
Description: The value of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
Hypotheses
Ref Expression
pcval.1 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
pcval.2 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
Assertion
Ref Expression
pcval ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
Distinct variable groups:   𝑥,𝑛,𝑦,𝑧,𝑁   𝑃,𝑛,𝑥,𝑦,𝑧   𝑧,𝑆   𝑧,𝑇
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑛)   𝑇(𝑥,𝑦,𝑛)

Proof of Theorem pcval
Dummy variables 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . . . 6 ((𝑝 = 𝑃𝑟 = 𝑁) → 𝑟 = 𝑁)
21eqeq1d 2825 . . . . 5 ((𝑝 = 𝑃𝑟 = 𝑁) → (𝑟 = 0 ↔ 𝑁 = 0))
3 eqeq1 2827 . . . . . . . 8 (𝑟 = 𝑁 → (𝑟 = (𝑥 / 𝑦) ↔ 𝑁 = (𝑥 / 𝑦)))
4 oveq1 7165 . . . . . . . . . . . . . 14 (𝑝 = 𝑃 → (𝑝𝑛) = (𝑃𝑛))
54breq1d 5078 . . . . . . . . . . . . 13 (𝑝 = 𝑃 → ((𝑝𝑛) ∥ 𝑥 ↔ (𝑃𝑛) ∥ 𝑥))
65rabbidv 3482 . . . . . . . . . . . 12 (𝑝 = 𝑃 → {𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥})
76supeq1d 8912 . . . . . . . . . . 11 (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ))
8 pcval.1 . . . . . . . . . . 11 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
97, 8syl6eqr 2876 . . . . . . . . . 10 (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) = 𝑆)
104breq1d 5078 . . . . . . . . . . . . 13 (𝑝 = 𝑃 → ((𝑝𝑛) ∥ 𝑦 ↔ (𝑃𝑛) ∥ 𝑦))
1110rabbidv 3482 . . . . . . . . . . . 12 (𝑝 = 𝑃 → {𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦})
1211supeq1d 8912 . . . . . . . . . . 11 (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))
13 pcval.2 . . . . . . . . . . 11 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
1412, 13syl6eqr 2876 . . . . . . . . . 10 (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ) = 𝑇)
159, 14oveq12d 7176 . . . . . . . . 9 (𝑝 = 𝑃 → (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < )) = (𝑆𝑇))
1615eqeq2d 2834 . . . . . . . 8 (𝑝 = 𝑃 → (𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < )) ↔ 𝑧 = (𝑆𝑇)))
173, 16bi2anan9r 638 . . . . . . 7 ((𝑝 = 𝑃𝑟 = 𝑁) → ((𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
18172rexbidv 3302 . . . . . 6 ((𝑝 = 𝑃𝑟 = 𝑁) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
1918iotabidv 6341 . . . . 5 ((𝑝 = 𝑃𝑟 = 𝑁) → (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < )))) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
202, 19ifbieq2d 4494 . . . 4 ((𝑝 = 𝑃𝑟 = 𝑁) → if(𝑟 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))))) = if(𝑁 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))))
21 df-pc 16176 . . . 4 pCnt = (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))))))
22 pnfex 10696 . . . . 5 +∞ ∈ V
23 iotaex 6337 . . . . 5 (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∈ V
2422, 23ifex 4517 . . . 4 if(𝑁 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))) ∈ V
2520, 21, 24ovmpoa 7307 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑃 pCnt 𝑁) = if(𝑁 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))))
26 ifnefalse 4481 . . 3 (𝑁 ≠ 0 → if(𝑁 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
2725, 26sylan9eq 2878 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) ∧ 𝑁 ≠ 0) → (𝑃 pCnt 𝑁) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
2827anasss 469 1 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wrex 3141  {crab 3144  ifcif 4469   class class class wbr 5068  cio 6314  (class class class)co 7158  supcsup 8906  cr 10538  0cc0 10539  +∞cpnf 10674   < clt 10677  cmin 10872   / cdiv 11299  cn 11640  0cn0 11900  cz 11984  cq 12351  cexp 13432  cdvds 15609  cprime 16017   pCnt cpc 16175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-sup 8908  df-pnf 10679  df-pc 16176
This theorem is referenced by:  pczpre  16186  pcdiv  16191
  Copyright terms: Public domain W3C validator