MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcval Structured version   Visualization version   GIF version

Theorem pcval 15771
Description: The value of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
Hypotheses
Ref Expression
pcval.1 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
pcval.2 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
Assertion
Ref Expression
pcval ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
Distinct variable groups:   𝑥,𝑛,𝑦,𝑧,𝑁   𝑃,𝑛,𝑥,𝑦,𝑧   𝑧,𝑆   𝑧,𝑇
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑛)   𝑇(𝑥,𝑦,𝑛)

Proof of Theorem pcval
Dummy variables 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 479 . . . . . 6 ((𝑝 = 𝑃𝑟 = 𝑁) → 𝑟 = 𝑁)
21eqeq1d 2762 . . . . 5 ((𝑝 = 𝑃𝑟 = 𝑁) → (𝑟 = 0 ↔ 𝑁 = 0))
3 eqeq1 2764 . . . . . . . 8 (𝑟 = 𝑁 → (𝑟 = (𝑥 / 𝑦) ↔ 𝑁 = (𝑥 / 𝑦)))
4 oveq1 6821 . . . . . . . . . . . . . 14 (𝑝 = 𝑃 → (𝑝𝑛) = (𝑃𝑛))
54breq1d 4814 . . . . . . . . . . . . 13 (𝑝 = 𝑃 → ((𝑝𝑛) ∥ 𝑥 ↔ (𝑃𝑛) ∥ 𝑥))
65rabbidv 3329 . . . . . . . . . . . 12 (𝑝 = 𝑃 → {𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥})
76supeq1d 8519 . . . . . . . . . . 11 (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ))
8 pcval.1 . . . . . . . . . . 11 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
97, 8syl6eqr 2812 . . . . . . . . . 10 (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) = 𝑆)
104breq1d 4814 . . . . . . . . . . . . 13 (𝑝 = 𝑃 → ((𝑝𝑛) ∥ 𝑦 ↔ (𝑃𝑛) ∥ 𝑦))
1110rabbidv 3329 . . . . . . . . . . . 12 (𝑝 = 𝑃 → {𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦})
1211supeq1d 8519 . . . . . . . . . . 11 (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))
13 pcval.2 . . . . . . . . . . 11 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
1412, 13syl6eqr 2812 . . . . . . . . . 10 (𝑝 = 𝑃 → sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ) = 𝑇)
159, 14oveq12d 6832 . . . . . . . . 9 (𝑝 = 𝑃 → (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < )) = (𝑆𝑇))
1615eqeq2d 2770 . . . . . . . 8 (𝑝 = 𝑃 → (𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < )) ↔ 𝑧 = (𝑆𝑇)))
173, 16bi2anan9r 954 . . . . . . 7 ((𝑝 = 𝑃𝑟 = 𝑁) → ((𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
18172rexbidv 3195 . . . . . 6 ((𝑝 = 𝑃𝑟 = 𝑁) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
1918iotabidv 6033 . . . . 5 ((𝑝 = 𝑃𝑟 = 𝑁) → (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < )))) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
202, 19ifbieq2d 4255 . . . 4 ((𝑝 = 𝑃𝑟 = 𝑁) → if(𝑟 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))))) = if(𝑁 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))))
21 df-pc 15764 . . . 4 pCnt = (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))))))
22 pnfex 10305 . . . . 5 +∞ ∈ V
23 iotaex 6029 . . . . 5 (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∈ V
2422, 23ifex 4300 . . . 4 if(𝑁 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))) ∈ V
2520, 21, 24ovmpt2a 6957 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑃 pCnt 𝑁) = if(𝑁 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))))
26 ifnefalse 4242 . . 3 (𝑁 ≠ 0 → if(𝑁 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
2725, 26sylan9eq 2814 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) ∧ 𝑁 ≠ 0) → (𝑃 pCnt 𝑁) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
2827anasss 682 1 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932  wrex 3051  {crab 3054  ifcif 4230   class class class wbr 4804  cio 6010  (class class class)co 6814  supcsup 8513  cr 10147  0cc0 10148  +∞cpnf 10283   < clt 10286  cmin 10478   / cdiv 10896  cn 11232  0cn0 11504  cz 11589  cq 12001  cexp 13074  cdvds 15202  cprime 15607   pCnt cpc 15763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-sup 8515  df-pnf 10288  df-xr 10290  df-pc 15764
This theorem is referenced by:  pczpre  15774  pcdiv  15779
  Copyright terms: Public domain W3C validator