MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano2uz2 Structured version   Visualization version   GIF version

Theorem peano2uz2 11294
Description: Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.)
Assertion
Ref Expression
peano2uz2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem peano2uz2
StepHypRef Expression
1 peano2z 11248 . . . 4 (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ)
21ad2antrl 759 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴𝐵)) → (𝐵 + 1) ∈ ℤ)
3 zre 11211 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4 zre 11211 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
5 lep1 10708 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ≤ (𝐵 + 1))
65adantl 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ (𝐵 + 1))
7 peano2re 10057 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
87ancli 571 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ))
9 letr 9979 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((𝐴𝐵𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1)))
1093expb 1257 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ)) → ((𝐴𝐵𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1)))
118, 10sylan2 489 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵 ≤ (𝐵 + 1)) → 𝐴 ≤ (𝐵 + 1)))
126, 11mpan2d 705 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐴 ≤ (𝐵 + 1)))
133, 4, 12syl2an 492 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵𝐴 ≤ (𝐵 + 1)))
1413impr 646 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴𝐵)) → 𝐴 ≤ (𝐵 + 1))
152, 14jca 552 . 2 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴𝐵)) → ((𝐵 + 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 + 1)))
16 breq2 4578 . . . 4 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
1716elrab 3327 . . 3 (𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥} ↔ (𝐵 ∈ ℤ ∧ 𝐴𝐵))
1817anbi2i 725 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥}) ↔ (𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐴𝐵)))
19 breq2 4578 . . 3 (𝑥 = (𝐵 + 1) → (𝐴𝑥𝐴 ≤ (𝐵 + 1)))
2019elrab 3327 . 2 ((𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥} ↔ ((𝐵 + 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 + 1)))
2115, 18, 203imtr4i 279 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wcel 1976  {crab 2896   class class class wbr 4574  (class class class)co 6524  cr 9788  1c1 9790   + caddc 9792  cle 9928  cz 11207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-er 7603  df-en 7816  df-dom 7817  df-sdom 7818  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-nn 10865  df-n0 11137  df-z 11208
This theorem is referenced by:  dfuzi  11297
  Copyright terms: Public domain W3C validator