Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem1 Structured version   Visualization version   GIF version

Theorem pellexlem1 37212
Description: Lemma for pellex 37218. Arithmetical core of pellexlem3, norm lower bound. This begins Dirichlet's proof of the Pell equation solution existence; the proof here follows theorem 62 of [vandenDries] p. 43. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
pellexlem1 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) ≠ 0)

Proof of Theorem pellexlem1
StepHypRef Expression
1 nncn 11013 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
213ad2ant2 1081 . . . . . 6 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
32sqcld 12989 . . . . 5 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ∈ ℂ)
4 nncn 11013 . . . . . . 7 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
543ad2ant1 1080 . . . . . 6 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐷 ∈ ℂ)
6 nncn 11013 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
763ad2ant3 1082 . . . . . . 7 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
87sqcld 12989 . . . . . 6 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ∈ ℂ)
95, 8mulcld 10045 . . . . 5 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐷 · (𝐵↑2)) ∈ ℂ)
103, 9subeq0ad 10387 . . . 4 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) − (𝐷 · (𝐵↑2))) = 0 ↔ (𝐴↑2) = (𝐷 · (𝐵↑2))))
11 nnne0 11038 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
12113ad2ant3 1082 . . . . . . 7 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ≠ 0)
13 sqne0 12913 . . . . . . . 8 (𝐵 ∈ ℂ → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0))
147, 13syl 17 . . . . . . 7 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0))
1512, 14mpbird 247 . . . . . 6 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵↑2) ≠ 0)
163, 5, 8, 15divmul3d 10820 . . . . 5 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) = 𝐷 ↔ (𝐴↑2) = (𝐷 · (𝐵↑2))))
17 sqdiv 12911 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
1817fveq2d 6182 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (√‘((𝐴 / 𝐵)↑2)) = (√‘((𝐴↑2) / (𝐵↑2))))
192, 7, 12, 18syl3anc 1324 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴 / 𝐵)↑2)) = (√‘((𝐴↑2) / (𝐵↑2))))
20 nnre 11012 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
21203ad2ant2 1081 . . . . . . . . . 10 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
22 nnre 11012 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
23223ad2ant3 1082 . . . . . . . . . 10 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
2421, 23, 12redivcld 10838 . . . . . . . . 9 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℝ)
25 nnnn0 11284 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
2625nn0ge0d 11339 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 0 ≤ 𝐴)
27263ad2ant2 1081 . . . . . . . . . 10 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ 𝐴)
28 nngt0 11034 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 0 < 𝐵)
29283ad2ant3 1082 . . . . . . . . . 10 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
30 divge0 10877 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))
3121, 27, 23, 29, 30syl22anc 1325 . . . . . . . . 9 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 ≤ (𝐴 / 𝐵))
3224, 31sqrtsqd 14139 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴 / 𝐵)↑2)) = (𝐴 / 𝐵))
3319, 32eqtr3d 2656 . . . . . . 7 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) = (𝐴 / 𝐵))
34 nnq 11786 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℚ)
35343ad2ant2 1081 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℚ)
36 nnq 11786 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℚ)
37363ad2ant3 1082 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℚ)
38 qdivcl 11794 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ)
3935, 37, 12, 38syl3anc 1324 . . . . . . 7 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
4033, 39eqeltrd 2699 . . . . . 6 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘((𝐴↑2) / (𝐵↑2))) ∈ ℚ)
41 fveq2 6178 . . . . . . 7 (((𝐴↑2) / (𝐵↑2)) = 𝐷 → (√‘((𝐴↑2) / (𝐵↑2))) = (√‘𝐷))
4241eleq1d 2684 . . . . . 6 (((𝐴↑2) / (𝐵↑2)) = 𝐷 → ((√‘((𝐴↑2) / (𝐵↑2))) ∈ ℚ ↔ (√‘𝐷) ∈ ℚ))
4340, 42syl5ibcom 235 . . . . 5 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) / (𝐵↑2)) = 𝐷 → (√‘𝐷) ∈ ℚ))
4416, 43sylbird 250 . . . 4 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑2) = (𝐷 · (𝐵↑2)) → (√‘𝐷) ∈ ℚ))
4510, 44sylbid 230 . . 3 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑2) − (𝐷 · (𝐵↑2))) = 0 → (√‘𝐷) ∈ ℚ))
4645necon3bd 2805 . 2 ((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ (√‘𝐷) ∈ ℚ → ((𝐴↑2) − (𝐷 · (𝐵↑2))) ≠ 0))
4746imp 445 1 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791   class class class wbr 4644  cfv 5876  (class class class)co 6635  cc 9919  cr 9920  0cc0 9921   · cmul 9926   < clt 10059  cle 10060  cmin 10251   / cdiv 10669  cn 11005  2c2 11055  cq 11773  cexp 12843  csqrt 13954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-sup 8333  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-z 11363  df-uz 11673  df-q 11774  df-rp 11818  df-seq 12785  df-exp 12844  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956
This theorem is referenced by:  pellexlem3  37214
  Copyright terms: Public domain W3C validator