Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem5 Structured version   Visualization version   GIF version

Theorem pellexlem5 37714
Description: Lemma for pellex 37716. Invoking fiphp3d 37700, we have infinitely many near-solutions for some specific norm. (Contributed by Stefan O'Rear, 19-Oct-2014.)
Assertion
Ref Expression
pellexlem5 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ℤ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ))
Distinct variable group:   𝑥,𝐷,𝑦,𝑧

Proof of Theorem pellexlem5
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pellexlem4 37713 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≈ ℕ)
2 fzfi 12811 . . . 4 (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∈ Fin
3 diffi 8233 . . . 4 ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∈ Fin → ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) ∈ Fin)
42, 3mp1i 13 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) ∈ Fin)
5 elopab 5012 . . . . 5 (𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ↔ ∃𝑦𝑧(𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))))
6 fveq2 6229 . . . . . . . . . . . 12 (𝑎 = ⟨𝑦, 𝑧⟩ → (1st𝑎) = (1st ‘⟨𝑦, 𝑧⟩))
76oveq1d 6705 . . . . . . . . . . 11 (𝑎 = ⟨𝑦, 𝑧⟩ → ((1st𝑎)↑2) = ((1st ‘⟨𝑦, 𝑧⟩)↑2))
8 fveq2 6229 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑦, 𝑧⟩ → (2nd𝑎) = (2nd ‘⟨𝑦, 𝑧⟩))
98oveq1d 6705 . . . . . . . . . . . 12 (𝑎 = ⟨𝑦, 𝑧⟩ → ((2nd𝑎)↑2) = ((2nd ‘⟨𝑦, 𝑧⟩)↑2))
109oveq2d 6706 . . . . . . . . . . 11 (𝑎 = ⟨𝑦, 𝑧⟩ → (𝐷 · ((2nd𝑎)↑2)) = (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2)))
117, 10oveq12d 6708 . . . . . . . . . 10 (𝑎 = ⟨𝑦, 𝑧⟩ → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = (((1st ‘⟨𝑦, 𝑧⟩)↑2) − (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2))))
12 vex 3234 . . . . . . . . . . . . 13 𝑦 ∈ V
13 vex 3234 . . . . . . . . . . . . 13 𝑧 ∈ V
1412, 13op1st 7218 . . . . . . . . . . . 12 (1st ‘⟨𝑦, 𝑧⟩) = 𝑦
1514oveq1i 6700 . . . . . . . . . . 11 ((1st ‘⟨𝑦, 𝑧⟩)↑2) = (𝑦↑2)
1612, 13op2nd 7219 . . . . . . . . . . . . 13 (2nd ‘⟨𝑦, 𝑧⟩) = 𝑧
1716oveq1i 6700 . . . . . . . . . . . 12 ((2nd ‘⟨𝑦, 𝑧⟩)↑2) = (𝑧↑2)
1817oveq2i 6701 . . . . . . . . . . 11 (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2)) = (𝐷 · (𝑧↑2))
1915, 18oveq12i 6702 . . . . . . . . . 10 (((1st ‘⟨𝑦, 𝑧⟩)↑2) − (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2))) = ((𝑦↑2) − (𝐷 · (𝑧↑2)))
2011, 19syl6eq 2701 . . . . . . . . 9 (𝑎 = ⟨𝑦, 𝑧⟩ → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = ((𝑦↑2) − (𝐷 · (𝑧↑2))))
2120ad2antrl 764 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = ((𝑦↑2) − (𝐷 · (𝑧↑2))))
22 simprrl 821 . . . . . . . . . . 11 ((𝐷 ∈ ℕ ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ))
23 simpl 472 . . . . . . . . . . 11 ((𝐷 ∈ ℕ ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → 𝐷 ∈ ℕ)
24 simprr 811 . . . . . . . . . . . 12 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))
2524ad2antll 765 . . . . . . . . . . 11 ((𝐷 ∈ ℕ ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))
26 nnz 11437 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
2726ad2antrr 762 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝑦 ∈ ℤ)
28 zsqcl 12974 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℤ)
2927, 28syl 17 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (𝑦↑2) ∈ ℤ)
30 nnz 11437 . . . . . . . . . . . . . . 15 (𝐷 ∈ ℕ → 𝐷 ∈ ℤ)
3130ad2antrl 764 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝐷 ∈ ℤ)
32 simplr 807 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝑧 ∈ ℕ)
3332nnzd 11519 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝑧 ∈ ℤ)
34 zsqcl 12974 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℤ → (𝑧↑2) ∈ ℤ)
3533, 34syl 17 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (𝑧↑2) ∈ ℤ)
3631, 35zmulcld 11526 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (𝐷 · (𝑧↑2)) ∈ ℤ)
3729, 36zsubcld 11525 . . . . . . . . . . . 12 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℤ)
38 1re 10077 . . . . . . . . . . . . . . 15 1 ∈ ℝ
39 2re 11128 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
40 nnre 11065 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ)
4140ad2antrl 764 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝐷 ∈ ℝ)
42 nnnn0 11337 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ ℕ → 𝐷 ∈ ℕ0)
4342ad2antrl 764 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 𝐷 ∈ ℕ0)
4443nn0ge0d 11392 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → 0 ≤ 𝐷)
4541, 44resqrtcld 14200 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (√‘𝐷) ∈ ℝ)
46 remulcl 10059 . . . . . . . . . . . . . . . 16 ((2 ∈ ℝ ∧ (√‘𝐷) ∈ ℝ) → (2 · (√‘𝐷)) ∈ ℝ)
4739, 45, 46sylancr 696 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (2 · (√‘𝐷)) ∈ ℝ)
48 readdcl 10057 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ (2 · (√‘𝐷)) ∈ ℝ) → (1 + (2 · (√‘𝐷))) ∈ ℝ)
4938, 47, 48sylancr 696 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (1 + (2 · (√‘𝐷))) ∈ ℝ)
5049flcld 12639 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ)
5150znegcld 11522 . . . . . . . . . . . 12 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → -(⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ)
5237zred 11520 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℝ)
5350zred 11520 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℝ)
54 nn0abscl 14096 . . . . . . . . . . . . . . . . . 18 (((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℤ → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ∈ ℕ0)
5537, 54syl 17 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ∈ ℕ0)
5655nn0zd 11518 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ∈ ℤ)
5756zred 11520 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ∈ ℝ)
58 peano2re 10247 . . . . . . . . . . . . . . . 16 ((⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℝ → ((⌊‘(1 + (2 · (√‘𝐷)))) + 1) ∈ ℝ)
5953, 58syl 17 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((⌊‘(1 + (2 · (√‘𝐷)))) + 1) ∈ ℝ)
60 simprr 811 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))
61 flltp1 12641 . . . . . . . . . . . . . . . 16 ((1 + (2 · (√‘𝐷))) ∈ ℝ → (1 + (2 · (√‘𝐷))) < ((⌊‘(1 + (2 · (√‘𝐷)))) + 1))
6249, 61syl 17 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (1 + (2 · (√‘𝐷))) < ((⌊‘(1 + (2 · (√‘𝐷)))) + 1))
6357, 49, 59, 60, 62lttrd 10236 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < ((⌊‘(1 + (2 · (√‘𝐷)))) + 1))
64 zleltp1 11466 . . . . . . . . . . . . . . 15 (((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ∈ ℤ ∧ (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ) → ((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))) ↔ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < ((⌊‘(1 + (2 · (√‘𝐷)))) + 1)))
6556, 50, 64syl2anc 694 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))) ↔ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < ((⌊‘(1 + (2 · (√‘𝐷)))) + 1)))
6663, 65mpbird 247 . . . . . . . . . . . . 13 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))))
67 absle 14099 . . . . . . . . . . . . . 14 ((((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℝ ∧ (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℝ) → ((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))) ↔ (-(⌊‘(1 + (2 · (√‘𝐷)))) ≤ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))))))
6867biimpa 500 . . . . . . . . . . . . 13 (((((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℝ ∧ (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℝ) ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) ≤ (⌊‘(1 + (2 · (√‘𝐷))))) → (-(⌊‘(1 + (2 · (√‘𝐷)))) ≤ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≤ (⌊‘(1 + (2 · (√‘𝐷))))))
6952, 53, 66, 68syl21anc 1365 . . . . . . . . . . . 12 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → (-(⌊‘(1 + (2 · (√‘𝐷)))) ≤ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≤ (⌊‘(1 + (2 · (√‘𝐷))))))
70 elfz 12370 . . . . . . . . . . . . 13 ((((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℤ ∧ -(⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ ∧ (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ) → (((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ↔ (-(⌊‘(1 + (2 · (√‘𝐷)))) ≤ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))))))
7170biimpar 501 . . . . . . . . . . . 12 (((((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ℤ ∧ -(⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ ∧ (⌊‘(1 + (2 · (√‘𝐷)))) ∈ ℤ) ∧ (-(⌊‘(1 + (2 · (√‘𝐷)))) ≤ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≤ (⌊‘(1 + (2 · (√‘𝐷)))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))))
7237, 51, 50, 69, 71syl31anc 1369 . . . . . . . . . . 11 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝐷 ∈ ℕ ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))))
7322, 23, 25, 72syl12anc 1364 . . . . . . . . . 10 ((𝐷 ∈ ℕ ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))))
7473adantlr 751 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))))
75 simprl 809 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0)
7675ad2antll 765 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0)
77 eldifsn 4350 . . . . . . . . 9 (((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) ↔ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0))
7874, 76, 77sylanbrc 699 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}))
7921, 78eqeltrd 2730 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}))
8079ex 449 . . . . . 6 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))) → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0})))
8180exlimdvv 1902 . . . . 5 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (∃𝑦𝑧(𝑎 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))) → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0})))
825, 81syl5bi 232 . . . 4 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0})))
8382imp 444 . . 3 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}) → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}))
841, 4, 83fiphp3d 37700 . 2 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}){𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ)
85 eldif 3617 . . . . . 6 (𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) ↔ (𝑥 ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∧ ¬ 𝑥 ∈ {0}))
86 elfzelz 12380 . . . . . . . 8 (𝑥 ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) → 𝑥 ∈ ℤ)
87 simp2 1082 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑥 ∈ ℤ ∧ ¬ 𝑥 ∈ {0}) → 𝑥 ∈ ℤ)
88 velsn 4226 . . . . . . . . . . . . 13 (𝑥 ∈ {0} ↔ 𝑥 = 0)
8988biimpri 218 . . . . . . . . . . . 12 (𝑥 = 0 → 𝑥 ∈ {0})
9089necon3bi 2849 . . . . . . . . . . 11 𝑥 ∈ {0} → 𝑥 ≠ 0)
91903ad2ant3 1104 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑥 ∈ ℤ ∧ ¬ 𝑥 ∈ {0}) → 𝑥 ≠ 0)
9287, 91jca 553 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ 𝑥 ∈ ℤ ∧ ¬ 𝑥 ∈ {0}) → (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0))
93923exp 1283 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑥 ∈ ℤ → (¬ 𝑥 ∈ {0} → (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0))))
9486, 93syl5 34 . . . . . . 7 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑥 ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) → (¬ 𝑥 ∈ {0} → (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0))))
9594impd 446 . . . . . 6 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑥 ∈ (-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∧ ¬ 𝑥 ∈ {0}) → (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)))
9685, 95syl5bi 232 . . . . 5 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) → (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)))
97 simp2l 1107 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → 𝑥 ∈ ℤ)
98 simp2r 1108 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → 𝑥 ≠ 0)
99 nnex 11064 . . . . . . . . . . 11 ℕ ∈ V
10099, 99xpex 7004 . . . . . . . . . 10 (ℕ × ℕ) ∈ V
101 opabssxp 5227 . . . . . . . . . 10 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ⊆ (ℕ × ℕ)
102 ssdomg 8043 . . . . . . . . . 10 ((ℕ × ℕ) ∈ V → ({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ⊆ (ℕ × ℕ) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ (ℕ × ℕ)))
103100, 101, 102mp2 9 . . . . . . . . 9 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ (ℕ × ℕ)
104 xpnnen 14983 . . . . . . . . 9 (ℕ × ℕ) ≈ ℕ
105 domentr 8056 . . . . . . . . 9 (({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ (ℕ × ℕ) ∧ (ℕ × ℕ) ≈ ℕ) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ ℕ)
106103, 104, 105mp2an 708 . . . . . . . 8 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ ℕ
107 ensym 8046 . . . . . . . . . 10 ({𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ → ℕ ≈ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥})
1081073ad2ant3 1104 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → ℕ ≈ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥})
109100, 101ssexi 4836 . . . . . . . . . 10 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ∈ V
110 fveq2 6229 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑏 → (1st𝑎) = (1st𝑏))
111110oveq1d 6705 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑏 → ((1st𝑎)↑2) = ((1st𝑏)↑2))
112 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑏 → (2nd𝑎) = (2nd𝑏))
113112oveq1d 6705 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑏 → ((2nd𝑎)↑2) = ((2nd𝑏)↑2))
114113oveq2d 6706 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑏 → (𝐷 · ((2nd𝑎)↑2)) = (𝐷 · ((2nd𝑏)↑2)))
115111, 114oveq12d 6708 . . . . . . . . . . . . . . 15 (𝑎 = 𝑏 → (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))))
116115eqeq1d 2653 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → ((((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥 ↔ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥))
117116elrab 3396 . . . . . . . . . . . . 13 (𝑏 ∈ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ↔ (𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥))
118 simprl 809 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → 𝑏 = ⟨𝑦, 𝑧⟩)
119 simprrl 821 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ))
120 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = ⟨𝑦, 𝑧⟩ → (1st𝑏) = (1st ‘⟨𝑦, 𝑧⟩))
121120oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = ⟨𝑦, 𝑧⟩ → ((1st𝑏)↑2) = ((1st ‘⟨𝑦, 𝑧⟩)↑2))
122 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = ⟨𝑦, 𝑧⟩ → (2nd𝑏) = (2nd ‘⟨𝑦, 𝑧⟩))
123122oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = ⟨𝑦, 𝑧⟩ → ((2nd𝑏)↑2) = ((2nd ‘⟨𝑦, 𝑧⟩)↑2))
124123oveq2d 6706 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = ⟨𝑦, 𝑧⟩ → (𝐷 · ((2nd𝑏)↑2)) = (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2)))
125121, 124oveq12d 6708 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = ⟨𝑦, 𝑧⟩ → (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = (((1st ‘⟨𝑦, 𝑧⟩)↑2) − (𝐷 · ((2nd ‘⟨𝑦, 𝑧⟩)↑2))))
126125, 19syl6req 2702 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = ⟨𝑦, 𝑧⟩ → ((𝑦↑2) − (𝐷 · (𝑧↑2))) = (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))))
127126ad2antrl 764 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) = (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))))
128 simplr 807 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥)
129127, 128eqtrd 2685 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)
130118, 119, 129jca32 557 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) ∧ (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))) → (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)))
131130ex 449 . . . . . . . . . . . . . . . . 17 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) → ((𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))) → (𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥))))
1321312eximdv 1888 . . . . . . . . . . . . . . . 16 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) → (∃𝑦𝑧(𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))) → ∃𝑦𝑧(𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥))))
133 elopab 5012 . . . . . . . . . . . . . . . 16 (𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ↔ ∃𝑦𝑧(𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))))
134 elopab 5012 . . . . . . . . . . . . . . . 16 (𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ↔ ∃𝑦𝑧(𝑏 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)))
135132, 133, 1343imtr4g 285 . . . . . . . . . . . . . . 15 ((((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) → (𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} → 𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}))
136135expimpd 628 . . . . . . . . . . . . . 14 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (((((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}) → 𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}))
137136ancomsd 469 . . . . . . . . . . . . 13 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → ((𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∧ (((1st𝑏)↑2) − (𝐷 · ((2nd𝑏)↑2))) = 𝑥) → 𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}))
138117, 137syl5bi 232 . . . . . . . . . . . 12 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑏 ∈ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} → 𝑏 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}))
139138ssrdv 3642 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ⊆ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)})
1401393adant3 1101 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ⊆ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)})
141 ssdomg 8043 . . . . . . . . . 10 ({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ∈ V → ({𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ⊆ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} → {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}))
142109, 140, 141mpsyl 68 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)})
143 endomtr 8055 . . . . . . . . 9 ((ℕ ≈ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}) → ℕ ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)})
144108, 142, 143syl2anc 694 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → ℕ ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)})
145 sbth 8121 . . . . . . . 8 (({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≼ ℕ ∧ ℕ ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)}) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)
146106, 144, 145sylancr 696 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)
14797, 98, 146jca32 557 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → (𝑥 ∈ ℤ ∧ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)))
1481473exp 1283 . . . . 5 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) → ({𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ → (𝑥 ∈ ℤ ∧ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)))))
14996, 148syld 47 . . . 4 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) → ({𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ → (𝑥 ∈ ℤ ∧ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)))))
150149impd 446 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}) ∧ {𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ) → (𝑥 ∈ ℤ ∧ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ))))
151150reximdv2 3043 . 2 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (∃𝑥 ∈ ((-(⌊‘(1 + (2 · (√‘𝐷))))...(⌊‘(1 + (2 · (√‘𝐷))))) ∖ {0}){𝑎 ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∣ (((1st𝑎)↑2) − (𝐷 · ((2nd𝑎)↑2))) = 𝑥} ≈ ℕ → ∃𝑥 ∈ ℤ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)))
15284, 151mpd 15 1 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ℤ (𝑥 ≠ 0 ∧ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wne 2823  wrex 2942  {crab 2945  Vcvv 3231  cdif 3604  wss 3607  {csn 4210  cop 4216   class class class wbr 4685  {copab 4745   × cxp 5141  cfv 5926  (class class class)co 6690  1st c1st 7208  2nd c2nd 7209  cen 7994  cdom 7995  Fincfn 7997  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304  -cneg 10305  cn 11058  2c2 11108  0cn0 11330  cz 11415  cq 11826  ...cfz 12364  cfl 12631  cexp 12900  csqrt 14017  abscabs 14018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-ico 12219  df-fz 12365  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-numer 15490  df-denom 15491
This theorem is referenced by:  pellex  37716
  Copyright terms: Public domain W3C validator