Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfund14 Structured version   Visualization version   GIF version

Theorem pellfund14 37982
Description: Every positive Pell solution is a power of the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
pellfund14 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐴

Proof of Theorem pellfund14
StepHypRef Expression
1 pell14qrrp 37944 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ+)
2 pellfundrp 37972 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ+)
32adantr 472 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ∈ ℝ+)
4 pellfundne1 37973 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ≠ 1)
54adantr 472 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ≠ 1)
6 reglogcl 37974 . . . 4 ((𝐴 ∈ ℝ+ ∧ (PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1) → ((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ)
71, 3, 5, 6syl3anc 1477 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ)
87flcld 12813 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ)
9 pell14qrre 37941 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ)
109recnd 10280 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℂ)
113, 8rpexpcld 13246 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℝ+)
1211rpcnd 12087 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℂ)
138znegcld 11696 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ)
143, 13rpexpcld 13246 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℝ+)
1514rpcnd 12087 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℂ)
1614rpne0d 12090 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ≠ 0)
17 simpl 474 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐷 ∈ (ℕ ∖ ◻NN))
18 pell1qrss14 37952 . . . . . . . . 9 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
19 pellfundex 37970 . . . . . . . . 9 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
2018, 19sseldd 3745 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell14QR‘𝐷))
2120adantr 472 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ∈ (Pell14QR‘𝐷))
22 pell14qrexpcl 37951 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (PellFund‘𝐷) ∈ (Pell14QR‘𝐷) ∧ -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ (Pell14QR‘𝐷))
2317, 21, 13, 22syl3anc 1477 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ (Pell14QR‘𝐷))
24 pell14qrmulcl 37947 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ (Pell14QR‘𝐷))
2523, 24mpd3an3 1574 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ (Pell14QR‘𝐷))
26 1rp 12049 . . . . . . . . . 10 1 ∈ ℝ+
2726a1i 11 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 ∈ ℝ+)
28 modge0 12892 . . . . . . . . 9 ((((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ ∧ 1 ∈ ℝ+) → 0 ≤ (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1))
297, 27, 28syl2anc 696 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 ≤ (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1))
307recnd 10280 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℂ)
318zcnd 11695 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℂ)
3230, 31negsubd 10610 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) − (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
33 modfrac 12897 . . . . . . . . . 10 (((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ → (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) − (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
347, 33syl 17 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) − (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
3532, 34eqtr4d 2797 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1))
3629, 35breqtrrd 4832 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 ≤ (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
37 reglog1 37980 . . . . . . . 8 (((PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1) → ((log‘1) / (log‘(PellFund‘𝐷))) = 0)
383, 5, 37syl2anc 696 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘1) / (log‘(PellFund‘𝐷))) = 0)
39 reglogmul 37977 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) ∈ ℝ+ ∧ ((PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1)) → ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) + ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷)))))
401, 14, 3, 5, 39syl112anc 1481 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) + ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷)))))
41 reglogexpbas 37981 . . . . . . . . . 10 ((-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ ∧ ((PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1)) → ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷))) = -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))
4213, 3, 5, 41syl12anc 1475 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷))) = -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))
4342oveq2d 6830 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) + ((log‘((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) / (log‘(PellFund‘𝐷)))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
4440, 43eqtrd 2794 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) = (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
4536, 38, 443brtr4d 4836 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘1) / (log‘(PellFund‘𝐷))) ≤ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))))
461, 14rpmulcld 12101 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ ℝ+)
47 pellfundgt1 37967 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷))
4847adantr 472 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 < (PellFund‘𝐷))
49 reglogleb 37976 . . . . . . 7 (((1 ∈ ℝ+ ∧ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ ℝ+) ∧ ((PellFund‘𝐷) ∈ ℝ+ ∧ 1 < (PellFund‘𝐷))) → (1 ≤ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ↔ ((log‘1) / (log‘(PellFund‘𝐷))) ≤ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷)))))
5027, 46, 3, 48, 49syl22anc 1478 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 ≤ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ↔ ((log‘1) / (log‘(PellFund‘𝐷))) ≤ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷)))))
5145, 50mpbird 247 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 ≤ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
52 modlt 12893 . . . . . . . . 9 ((((log‘𝐴) / (log‘(PellFund‘𝐷))) ∈ ℝ ∧ 1 ∈ ℝ+) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1) < 1)
537, 27, 52syl2anc 696 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) mod 1) < 1)
5435, 53eqbrtrd 4826 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (((log‘𝐴) / (log‘(PellFund‘𝐷))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) < 1)
55 reglogbas 37979 . . . . . . . 8 (((PellFund‘𝐷) ∈ ℝ+ ∧ (PellFund‘𝐷) ≠ 1) → ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷))) = 1)
563, 5, 55syl2anc 696 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷))) = 1)
5754, 44, 563brtr4d 4836 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) < ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷))))
58 reglogltb 37975 . . . . . . 7 ((((𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ ℝ+ ∧ (PellFund‘𝐷) ∈ ℝ+) ∧ ((PellFund‘𝐷) ∈ ℝ+ ∧ 1 < (PellFund‘𝐷))) → ((𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) < (PellFund‘𝐷) ↔ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) < ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷)))))
5946, 3, 3, 48, 58syl22anc 1478 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) < (PellFund‘𝐷) ↔ ((log‘(𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))) / (log‘(PellFund‘𝐷))) < ((log‘(PellFund‘𝐷)) / (log‘(PellFund‘𝐷)))))
6057, 59mpbird 247 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) < (PellFund‘𝐷))
61 pellfund14gap 37971 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∈ (Pell14QR‘𝐷) ∧ (1 ≤ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) ∧ (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) < (PellFund‘𝐷))) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = 1)
6217, 25, 51, 60, 61syl112anc 1481 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = 1)
6331negidd 10594 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) = 0)
6463oveq2d 6830 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = ((PellFund‘𝐷)↑0))
653rpcnd 12087 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ∈ ℂ)
663rpne0d 12090 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (PellFund‘𝐷) ≠ 0)
67 expaddz 13118 . . . . . 6 ((((PellFund‘𝐷) ∈ ℂ ∧ (PellFund‘𝐷) ≠ 0) ∧ ((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ ∧ -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ)) → ((PellFund‘𝐷)↑((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = (((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
6865, 66, 8, 13, 67syl22anc 1478 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) + -(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = (((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
6965exp0d 13216 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((PellFund‘𝐷)↑0) = 1)
7064, 68, 693eqtr3rd 2803 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 = (((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
7162, 70eqtrd 2794 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) = (((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))) · ((PellFund‘𝐷)↑-(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
7210, 12, 15, 16, 71mulcan2ad 10875 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 = ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
73 oveq2 6822 . . . 4 (𝑥 = (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) → ((PellFund‘𝐷)↑𝑥) = ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷))))))
7473eqeq2d 2770 . . 3 (𝑥 = (⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) → (𝐴 = ((PellFund‘𝐷)↑𝑥) ↔ 𝐴 = ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))))
7574rspcev 3449 . 2 (((⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))) ∈ ℤ ∧ 𝐴 = ((PellFund‘𝐷)↑(⌊‘((log‘𝐴) / (log‘(PellFund‘𝐷)))))) → ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥))
768, 72, 75syl2anc 696 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  wrex 3051  cdif 3712   class class class wbr 4804  cfv 6049  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153   < clt 10286  cle 10287  cmin 10478  -cneg 10479   / cdiv 10896  cn 11232  cz 11589  +crp 12045  cfl 12805   mod cmo 12882  cexp 13074  logclog 24521  NNcsquarenn 37920  Pell1QRcpell1qr 37921  Pell14QRcpell14qr 37923  PellFundcpellfund 37924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-omul 7735  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-acn 8978  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-xnn0 11576  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ioc 12393  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-fac 13275  df-bc 13304  df-hash 13332  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-sum 14636  df-ef 15017  df-sin 15019  df-cos 15020  df-pi 15022  df-dvds 15203  df-gcd 15439  df-numer 15665  df-denom 15666  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23849  df-dv 23850  df-log 24523  df-squarenn 37925  df-pell1qr 37926  df-pell14qr 37927  df-pell1234qr 37928  df-pellfund 37929
This theorem is referenced by:  pellfund14b  37983
  Copyright terms: Public domain W3C validator