Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundlb Structured version   Visualization version   GIF version

Theorem pellfundlb 39474
Description: A nontrivial first quadrant solution is at least as large as the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Proof shortened by AV, 15-Sep-2020.)
Assertion
Ref Expression
pellfundlb ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → (PellFund‘𝐷) ≤ 𝐴)

Proof of Theorem pellfundlb
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pellfundval 39470 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
213ad2ant1 1129 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → (PellFund‘𝐷) = inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ))
3 ssrab2 4055 . . . . 5 {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ (Pell14QR‘𝐷)
4 pell14qrre 39447 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑑 ∈ (Pell14QR‘𝐷)) → 𝑑 ∈ ℝ)
54ex 415 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑑 ∈ (Pell14QR‘𝐷) → 𝑑 ∈ ℝ))
65ssrdv 3972 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ ℝ)
73, 6sstrid 3977 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ)
873ad2ant1 1129 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ)
9 1re 10635 . . . 4 1 ∈ ℝ
10 breq2 5062 . . . . . . . 8 (𝑎 = 𝑐 → (1 < 𝑎 ↔ 1 < 𝑐))
1110elrab 3679 . . . . . . 7 (𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ↔ (𝑐 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑐))
12 pell14qrre 39447 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑐 ∈ (Pell14QR‘𝐷)) → 𝑐 ∈ ℝ)
13 ltle 10723 . . . . . . . . 9 ((1 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (1 < 𝑐 → 1 ≤ 𝑐))
149, 12, 13sylancr 589 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑐 ∈ (Pell14QR‘𝐷)) → (1 < 𝑐 → 1 ≤ 𝑐))
1514expimpd 456 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → ((𝑐 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝑐) → 1 ≤ 𝑐))
1611, 15syl5bi 244 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} → 1 ≤ 𝑐))
1716ralrimiv 3181 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}1 ≤ 𝑐)
18173ad2ant1 1129 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}1 ≤ 𝑐)
19 breq1 5061 . . . . . 6 (𝑏 = 1 → (𝑏𝑐 ↔ 1 ≤ 𝑐))
2019ralbidv 3197 . . . . 5 (𝑏 = 1 → (∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝑏𝑐 ↔ ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}1 ≤ 𝑐))
2120rspcev 3622 . . . 4 ((1 ∈ ℝ ∧ ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}1 ≤ 𝑐) → ∃𝑏 ∈ ℝ ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝑏𝑐)
229, 18, 21sylancr 589 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → ∃𝑏 ∈ ℝ ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝑏𝑐)
23 simp2 1133 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → 𝐴 ∈ (Pell14QR‘𝐷))
24 simp3 1134 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → 1 < 𝐴)
25 breq2 5062 . . . . 5 (𝑎 = 𝐴 → (1 < 𝑎 ↔ 1 < 𝐴))
2625elrab 3679 . . . 4 (𝐴 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ↔ (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴))
2723, 24, 26sylanbrc 585 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → 𝐴 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎})
28 infrelb 11620 . . 3 (({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎} ⊆ ℝ ∧ ∃𝑏 ∈ ℝ ∀𝑐 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}𝑏𝑐𝐴 ∈ {𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}) → inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ) ≤ 𝐴)
298, 22, 27, 28syl3anc 1367 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → inf({𝑎 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑎}, ℝ, < ) ≤ 𝐴)
302, 29eqbrtrd 5080 1 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → (PellFund‘𝐷) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139  {crab 3142  cdif 3932  wss 3935   class class class wbr 5058  cfv 6349  infcinf 8899  cr 10530  1c1 10532   < clt 10669  cle 10670  cn 11632  NNcsquarenn 39426  Pell14QRcpell14qr 39429  PellFundcpellfund 39430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-pell14qr 39433  df-pell1234qr 39434  df-pellfund 39435
This theorem is referenced by:  pellfundglb  39475  pellfund14gap  39477  rmspecfund  39499
  Copyright terms: Public domain W3C validator