![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pellfundval | Structured version Visualization version GIF version |
Description: Value of the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 18-Sep-2014.) (Revised by AV, 17-Sep-2020.) |
Ref | Expression |
---|---|
pellfundval | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6352 | . . . 4 ⊢ (𝑎 = 𝐷 → (Pell14QR‘𝑎) = (Pell14QR‘𝐷)) | |
2 | rabeq 3332 | . . . 4 ⊢ ((Pell14QR‘𝑎) = (Pell14QR‘𝐷) → {𝑥 ∈ (Pell14QR‘𝑎) ∣ 1 < 𝑥} = {𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑎 = 𝐷 → {𝑥 ∈ (Pell14QR‘𝑎) ∣ 1 < 𝑥} = {𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}) |
4 | 3 | infeq1d 8548 | . 2 ⊢ (𝑎 = 𝐷 → inf({𝑥 ∈ (Pell14QR‘𝑎) ∣ 1 < 𝑥}, ℝ, < ) = inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < )) |
5 | df-pellfund 37911 | . 2 ⊢ PellFund = (𝑎 ∈ (ℕ ∖ ◻NN) ↦ inf({𝑥 ∈ (Pell14QR‘𝑎) ∣ 1 < 𝑥}, ℝ, < )) | |
6 | ltso 10310 | . . 3 ⊢ < Or ℝ | |
7 | 6 | infex 8564 | . 2 ⊢ inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < ) ∈ V |
8 | 4, 5, 7 | fvmpt 6444 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 {crab 3054 ∖ cdif 3712 class class class wbr 4804 ‘cfv 6049 infcinf 8512 ℝcr 10127 1c1 10129 < clt 10266 ℕcn 11212 ◻NNcsquarenn 37902 Pell14QRcpell14qr 37905 PellFundcpellfund 37906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-pre-lttri 10202 ax-pre-lttrn 10203 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-sup 8513 df-inf 8514 df-pnf 10268 df-mnf 10269 df-ltxr 10271 df-pellfund 37911 |
This theorem is referenced by: pellfundre 37947 pellfundge 37948 pellfundlb 37950 pellfundglb 37951 |
Copyright terms: Public domain | W3C validator |