MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfdvf Structured version   Visualization version   GIF version

Theorem perfdvf 23712
Description: The derivative is a function, whenever it is defined relative to a perfect subset of the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
perfdvf.1 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
perfdvf ((𝐾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)

Proof of Theorem perfdvf
Dummy variables 𝑓 𝑠 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dv 23676 . . . . . . . . . . . . . . . . . . . 20 D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
21dmmpt2ssx 7280 . . . . . . . . . . . . . . . . . . 19 dom D ⊆ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠))
3 simpl 472 . . . . . . . . . . . . . . . . . . 19 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ⟨𝑆, 𝐹⟩ ∈ dom D )
42, 3sseldi 3634 . . . . . . . . . . . . . . . . . 18 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ⟨𝑆, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)))
5 oveq2 6698 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑆 → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
65opeliunxp2 5293 . . . . . . . . . . . . . . . . . 18 (⟨𝑆, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)) ↔ (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))
74, 6sylib 208 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))
87simprd 478 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝐹 ∈ (ℂ ↑pm 𝑆))
9 cnex 10055 . . . . . . . . . . . . . . . . 17 ℂ ∈ V
107simpld 474 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝑆 ∈ 𝒫 ℂ)
11 elpm2g 7916 . . . . . . . . . . . . . . . . 17 ((ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
129, 10, 11sylancr 696 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
138, 12mpbid 222 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
1413simpld 474 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝐹:dom 𝐹⟶ℂ)
1514adantr 480 . . . . . . . . . . . . 13 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → 𝐹:dom 𝐹⟶ℂ)
162sseli 3632 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑆, 𝐹⟩ ∈ dom D → ⟨𝑆, 𝐹⟩ ∈ 𝑠 ∈ 𝒫 ℂ({𝑠} × (ℂ ↑pm 𝑠)))
1716, 6sylib 208 . . . . . . . . . . . . . . . . . . 19 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)))
1817simprd 478 . . . . . . . . . . . . . . . . . 18 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝐹 ∈ (ℂ ↑pm 𝑆))
1917simpld 474 . . . . . . . . . . . . . . . . . . 19 (⟨𝑆, 𝐹⟩ ∈ dom D → 𝑆 ∈ 𝒫 ℂ)
209, 19, 11sylancr 696 . . . . . . . . . . . . . . . . . 18 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
2118, 20mpbid 222 . . . . . . . . . . . . . . . . 17 (⟨𝑆, 𝐹⟩ ∈ dom D → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
2221simprd 478 . . . . . . . . . . . . . . . 16 (⟨𝑆, 𝐹⟩ ∈ dom D → dom 𝐹𝑆)
2322adantr 480 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → dom 𝐹𝑆)
2410elpwid 4203 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝑆 ⊆ ℂ)
2523, 24sstrd 3646 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → dom 𝐹 ⊆ ℂ)
2625adantr 480 . . . . . . . . . . . . 13 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → dom 𝐹 ⊆ ℂ)
27 perfdvf.1 . . . . . . . . . . . . . . . . . 18 𝐾 = (TopOpen‘ℂfld)
2827cnfldtopon 22633 . . . . . . . . . . . . . . . . 17 𝐾 ∈ (TopOn‘ℂ)
29 resttopon 21013 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
3028, 24, 29sylancr 696 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
31 topontop 20766 . . . . . . . . . . . . . . . 16 ((𝐾t 𝑆) ∈ (TopOn‘𝑆) → (𝐾t 𝑆) ∈ Top)
3230, 31syl 17 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐾t 𝑆) ∈ Top)
33 toponuni 20767 . . . . . . . . . . . . . . . . 17 ((𝐾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐾t 𝑆))
3430, 33syl 17 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝑆 = (𝐾t 𝑆))
3523, 34sseqtrd 3674 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → dom 𝐹 (𝐾t 𝑆))
36 eqid 2651 . . . . . . . . . . . . . . . 16 (𝐾t 𝑆) = (𝐾t 𝑆)
3736ntrss2 20909 . . . . . . . . . . . . . . 15 (((𝐾t 𝑆) ∈ Top ∧ dom 𝐹 (𝐾t 𝑆)) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹)
3832, 35, 37syl2anc 694 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹)
3938sselda 3636 . . . . . . . . . . . . 13 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ dom 𝐹)
4015, 26, 39dvlem 23705 . . . . . . . . . . . 12 ((((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∧ 𝑧 ∈ (dom 𝐹 ∖ {𝑥})) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) ∈ ℂ)
41 eqid 2651 . . . . . . . . . . . 12 (𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
4240, 41fmptd 6425 . . . . . . . . . . 11 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → (𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))):(dom 𝐹 ∖ {𝑥})⟶ℂ)
4326ssdifssd 3781 . . . . . . . . . . 11 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → (dom 𝐹 ∖ {𝑥}) ⊆ ℂ)
4428a1i 11 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝐾 ∈ (TopOn‘ℂ))
4536ntrss3 20912 . . . . . . . . . . . . . . . . . . 19 (((𝐾t 𝑆) ∈ Top ∧ dom 𝐹 (𝐾t 𝑆)) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ (𝐾t 𝑆))
4632, 35, 45syl2anc 694 . . . . . . . . . . . . . . . . . 18 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ (𝐾t 𝑆))
4746, 34sseqtr4d 3675 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ 𝑆)
48 restabs 21017 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ (TopOn‘ℂ) ∧ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ 𝑆𝑆 ∈ 𝒫 ℂ) → ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) = (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)))
4944, 47, 10, 48syl3anc 1366 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) = (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)))
50 simpr 476 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐾t 𝑆) ∈ Perf)
5136ntropn 20901 . . . . . . . . . . . . . . . . . 18 (((𝐾t 𝑆) ∈ Top ∧ dom 𝐹 (𝐾t 𝑆)) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ∈ (𝐾t 𝑆))
5232, 35, 51syl2anc 694 . . . . . . . . . . . . . . . . 17 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ∈ (𝐾t 𝑆))
53 eqid 2651 . . . . . . . . . . . . . . . . . 18 ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) = ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹))
5436, 53perfopn 21037 . . . . . . . . . . . . . . . . 17 (((𝐾t 𝑆) ∈ Perf ∧ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∈ (𝐾t 𝑆)) → ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf)
5550, 52, 54syl2anc 694 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((𝐾t 𝑆) ↾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf)
5649, 55eqeltrrd 2731 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf)
5727cnfldtop 22634 . . . . . . . . . . . . . . . 16 𝐾 ∈ Top
5847, 24sstrd 3646 . . . . . . . . . . . . . . . 16 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ℂ)
5928toponunii 20769 . . . . . . . . . . . . . . . . 17 ℂ = 𝐾
60 eqid 2651 . . . . . . . . . . . . . . . . 17 (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) = (𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹))
6159, 60restperf 21036 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Top ∧ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ℂ) → ((𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf ↔ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹))))
6257, 58, 61sylancr 696 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((𝐾t ((int‘(𝐾t 𝑆))‘dom 𝐹)) ∈ Perf ↔ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹))))
6356, 62mpbid 222 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹)))
6457a1i 11 . . . . . . . . . . . . . . 15 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → 𝐾 ∈ Top)
6559lpss3 20996 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Top ∧ dom 𝐹 ⊆ ℂ ∧ ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ dom 𝐹) → ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹)) ⊆ ((limPt‘𝐾)‘dom 𝐹))
6664, 25, 38, 65syl3anc 1366 . . . . . . . . . . . . . 14 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((limPt‘𝐾)‘((int‘(𝐾t 𝑆))‘dom 𝐹)) ⊆ ((limPt‘𝐾)‘dom 𝐹))
6763, 66sstrd 3646 . . . . . . . . . . . . 13 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ((int‘(𝐾t 𝑆))‘dom 𝐹) ⊆ ((limPt‘𝐾)‘dom 𝐹))
6867sselda 3636 . . . . . . . . . . . 12 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ ((limPt‘𝐾)‘dom 𝐹))
6959lpdifsn 20995 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ dom 𝐹 ⊆ ℂ) → (𝑥 ∈ ((limPt‘𝐾)‘dom 𝐹) ↔ 𝑥 ∈ ((limPt‘𝐾)‘(dom 𝐹 ∖ {𝑥}))))
7057, 26, 69sylancr 696 . . . . . . . . . . . 12 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → (𝑥 ∈ ((limPt‘𝐾)‘dom 𝐹) ↔ 𝑥 ∈ ((limPt‘𝐾)‘(dom 𝐹 ∖ {𝑥}))))
7168, 70mpbid 222 . . . . . . . . . . 11 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → 𝑥 ∈ ((limPt‘𝐾)‘(dom 𝐹 ∖ {𝑥})))
7242, 43, 71, 27limcmo 23691 . . . . . . . . . 10 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹)) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
7372ex 449 . . . . . . . . 9 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
74 moanimv 2560 . . . . . . . . 9 (∃*𝑦(𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)) ↔ (𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) → ∃*𝑦 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
7573, 74sylibr 224 . . . . . . . 8 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ∃*𝑦(𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥)))
76 eqid 2651 . . . . . . . . . 10 (𝐾t 𝑆) = (𝐾t 𝑆)
7776, 27, 41, 24, 14, 23eldv 23707 . . . . . . . . 9 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑥(𝑆 D 𝐹)𝑦 ↔ (𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
7877mobidv 2519 . . . . . . . 8 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (∃*𝑦 𝑥(𝑆 D 𝐹)𝑦 ↔ ∃*𝑦(𝑥 ∈ ((int‘(𝐾t 𝑆))‘dom 𝐹) ∧ 𝑦 ∈ ((𝑧 ∈ (dom 𝐹 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
7975, 78mpbird 247 . . . . . . 7 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)
8079alrimiv 1895 . . . . . 6 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)
81 reldv 23679 . . . . . . 7 Rel (𝑆 D 𝐹)
82 dffun6 5941 . . . . . . 7 (Fun (𝑆 D 𝐹) ↔ (Rel (𝑆 D 𝐹) ∧ ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦))
8381, 82mpbiran 973 . . . . . 6 (Fun (𝑆 D 𝐹) ↔ ∀𝑥∃*𝑦 𝑥(𝑆 D 𝐹)𝑦)
8480, 83sylibr 224 . . . . 5 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → Fun (𝑆 D 𝐹))
85 funfn 5956 . . . . 5 (Fun (𝑆 D 𝐹) ↔ (𝑆 D 𝐹) Fn dom (𝑆 D 𝐹))
8684, 85sylib 208 . . . 4 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑆 D 𝐹) Fn dom (𝑆 D 𝐹))
87 vex 3234 . . . . . . 7 𝑦 ∈ V
8887elrn 5398 . . . . . 6 (𝑦 ∈ ran (𝑆 D 𝐹) ↔ ∃𝑥 𝑥(𝑆 D 𝐹)𝑦)
8924, 14, 23dvcl 23708 . . . . . . . 8 (((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)
9089ex 449 . . . . . . 7 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑥(𝑆 D 𝐹)𝑦𝑦 ∈ ℂ))
9190exlimdv 1901 . . . . . 6 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (∃𝑥 𝑥(𝑆 D 𝐹)𝑦𝑦 ∈ ℂ))
9288, 91syl5bi 232 . . . . 5 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑦 ∈ ran (𝑆 D 𝐹) → 𝑦 ∈ ℂ))
9392ssrdv 3642 . . . 4 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → ran (𝑆 D 𝐹) ⊆ ℂ)
94 df-f 5930 . . . 4 ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ ((𝑆 D 𝐹) Fn dom (𝑆 D 𝐹) ∧ ran (𝑆 D 𝐹) ⊆ ℂ))
9586, 93, 94sylanbrc 699 . . 3 ((⟨𝑆, 𝐹⟩ ∈ dom D ∧ (𝐾t 𝑆) ∈ Perf) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
9695ex 449 . 2 (⟨𝑆, 𝐹⟩ ∈ dom D → ((𝐾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ))
97 f0 6124 . . . 4 ∅:∅⟶ℂ
98 df-ov 6693 . . . . . 6 (𝑆 D 𝐹) = ( D ‘⟨𝑆, 𝐹⟩)
99 ndmfv 6256 . . . . . 6 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → ( D ‘⟨𝑆, 𝐹⟩) = ∅)
10098, 99syl5eq 2697 . . . . 5 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 D 𝐹) = ∅)
101100dmeqd 5358 . . . . . 6 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) = dom ∅)
102 dm0 5371 . . . . . 6 dom ∅ = ∅
103101, 102syl6eq 2701 . . . . 5 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → dom (𝑆 D 𝐹) = ∅)
104100, 103feq12d 6071 . . . 4 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ ∅:∅⟶ℂ))
10597, 104mpbiri 248 . . 3 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
106105a1d 25 . 2 (¬ ⟨𝑆, 𝐹⟩ ∈ dom D → ((𝐾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ))
10796, 106pm2.61i 176 1 ((𝐾t 𝑆) ∈ Perf → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  wal 1521   = wceq 1523  wex 1744  wcel 2030  ∃*wmo 2499  Vcvv 3231  cdif 3604  wss 3607  c0 3948  𝒫 cpw 4191  {csn 4210  cop 4216   cuni 4468   ciun 4552   class class class wbr 4685  cmpt 4762   × cxp 5141  dom cdm 5143  ran crn 5144  Rel wrel 5148  Fun wfun 5920   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  pm cpm 7900  cc 9972  cmin 10304   / cdiv 10722  t crest 16128  TopOpenctopn 16129  fldccnfld 19794  Topctop 20746  TopOnctopon 20763  intcnt 20869  limPtclp 20986  Perfcperf 20987   lim climc 23671   D cdv 23672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-icc 12220  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-rest 16130  df-topn 16131  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cnp 21080  df-haus 21167  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-limc 23675  df-dv 23676
This theorem is referenced by:  dvfg  23715
  Copyright terms: Public domain W3C validator