Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  perfectALTVlem1 Structured version   Visualization version   GIF version

Theorem perfectALTVlem1 40058
Description: Lemma for perfectALTV 40060. (Contributed by Mario Carneiro, 7-Jun-2016.) (Revised by AV, 1-Jul-2020.)
Hypotheses
Ref Expression
perfectALTVlem.1 (𝜑𝐴 ∈ ℕ)
perfectALTVlem.2 (𝜑𝐵 ∈ ℕ)
perfectALTVlem.3 (𝜑𝐵 ∈ Odd )
perfectALTVlem.4 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
Assertion
Ref Expression
perfectALTVlem1 (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))

Proof of Theorem perfectALTVlem1
StepHypRef Expression
1 2nn 10938 . . 3 2 ∈ ℕ
2 perfectALTVlem.1 . . . . 5 (𝜑𝐴 ∈ ℕ)
32nnnn0d 11104 . . . 4 (𝜑𝐴 ∈ ℕ0)
4 peano2nn0 11086 . . . 4 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ0)
53, 4syl 17 . . 3 (𝜑 → (𝐴 + 1) ∈ ℕ0)
6 nnexpcl 12599 . . 3 ((2 ∈ ℕ ∧ (𝐴 + 1) ∈ ℕ0) → (2↑(𝐴 + 1)) ∈ ℕ)
71, 5, 6sylancr 693 . 2 (𝜑 → (2↑(𝐴 + 1)) ∈ ℕ)
8 2re 10843 . . . . 5 2 ∈ ℝ
98a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
102peano2nnd 10790 . . . 4 (𝜑 → (𝐴 + 1) ∈ ℕ)
11 1lt2 10947 . . . . 5 1 < 2
1211a1i 11 . . . 4 (𝜑 → 1 < 2)
13 expgt1 12624 . . . 4 ((2 ∈ ℝ ∧ (𝐴 + 1) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(𝐴 + 1)))
149, 10, 12, 13syl3anc 1317 . . 3 (𝜑 → 1 < (2↑(𝐴 + 1)))
15 1nn 10784 . . . 4 1 ∈ ℕ
16 nnsub 10812 . . . 4 ((1 ∈ ℕ ∧ (2↑(𝐴 + 1)) ∈ ℕ) → (1 < (2↑(𝐴 + 1)) ↔ ((2↑(𝐴 + 1)) − 1) ∈ ℕ))
1715, 7, 16sylancr 693 . . 3 (𝜑 → (1 < (2↑(𝐴 + 1)) ↔ ((2↑(𝐴 + 1)) − 1) ∈ ℕ))
1814, 17mpbid 220 . 2 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℕ)
197nnzd 11219 . . . . . . 7 (𝜑 → (2↑(𝐴 + 1)) ∈ ℤ)
20 peano2zm 11159 . . . . . . 7 ((2↑(𝐴 + 1)) ∈ ℤ → ((2↑(𝐴 + 1)) − 1) ∈ ℤ)
2119, 20syl 17 . . . . . 6 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℤ)
22 1nn0 11061 . . . . . . . 8 1 ∈ ℕ0
23 perfectALTVlem.2 . . . . . . . 8 (𝜑𝐵 ∈ ℕ)
24 sgmnncl 24573 . . . . . . . 8 ((1 ∈ ℕ0𝐵 ∈ ℕ) → (1 σ 𝐵) ∈ ℕ)
2522, 23, 24sylancr 693 . . . . . . 7 (𝜑 → (1 σ 𝐵) ∈ ℕ)
2625nnzd 11219 . . . . . 6 (𝜑 → (1 σ 𝐵) ∈ ℤ)
27 dvdsmul1 14705 . . . . . 6 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (1 σ 𝐵) ∈ ℤ) → ((2↑(𝐴 + 1)) − 1) ∥ (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
2821, 26, 27syl2anc 690 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
29 2cn 10844 . . . . . . . . 9 2 ∈ ℂ
30 expp1 12593 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝐴 ∈ ℕ0) → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
3129, 3, 30sylancr 693 . . . . . . . 8 (𝜑 → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
32 nnexpcl 12599 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (2↑𝐴) ∈ ℕ)
331, 3, 32sylancr 693 . . . . . . . . . 10 (𝜑 → (2↑𝐴) ∈ ℕ)
3433nncnd 10789 . . . . . . . . 9 (𝜑 → (2↑𝐴) ∈ ℂ)
35 mulcom 9775 . . . . . . . . 9 (((2↑𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
3634, 29, 35sylancl 692 . . . . . . . 8 (𝜑 → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
3731, 36eqtrd 2548 . . . . . . 7 (𝜑 → (2↑(𝐴 + 1)) = (2 · (2↑𝐴)))
3837oveq1d 6440 . . . . . 6 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = ((2 · (2↑𝐴)) · 𝐵))
3929a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
4023nncnd 10789 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4139, 34, 40mulassd 9816 . . . . . 6 (𝜑 → ((2 · (2↑𝐴)) · 𝐵) = (2 · ((2↑𝐴) · 𝐵)))
42 1cnd 9809 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
43 perfectALTVlem.3 . . . . . . . . . 10 (𝜑𝐵 ∈ Odd )
44 isodd7 40009 . . . . . . . . . . 11 (𝐵 ∈ Odd ↔ (𝐵 ∈ ℤ ∧ (2 gcd 𝐵) = 1))
4544simprbi 478 . . . . . . . . . 10 (𝐵 ∈ Odd → (2 gcd 𝐵) = 1)
4643, 45syl 17 . . . . . . . . 9 (𝜑 → (2 gcd 𝐵) = 1)
47 2z 11148 . . . . . . . . . . 11 2 ∈ ℤ
4847a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℤ)
4923nnzd 11219 . . . . . . . . . 10 (𝜑𝐵 ∈ ℤ)
50 rpexp1i 15151 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
5148, 49, 3, 50syl3anc 1317 . . . . . . . . 9 (𝜑 → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
5246, 51mpd 15 . . . . . . . 8 (𝜑 → ((2↑𝐴) gcd 𝐵) = 1)
53 sgmmul 24626 . . . . . . . 8 ((1 ∈ ℂ ∧ ((2↑𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ((2↑𝐴) gcd 𝐵) = 1)) → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
5442, 33, 23, 52, 53syl13anc 1319 . . . . . . 7 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
55 perfectALTVlem.4 . . . . . . 7 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
562nncnd 10789 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
57 pncan1 10203 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((𝐴 + 1) − 1) = 𝐴)
5856, 57syl 17 . . . . . . . . . . 11 (𝜑 → ((𝐴 + 1) − 1) = 𝐴)
5958oveq2d 6441 . . . . . . . . . 10 (𝜑 → (2↑((𝐴 + 1) − 1)) = (2↑𝐴))
6059oveq2d 6441 . . . . . . . . 9 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = (1 σ (2↑𝐴)))
61 1sgm2ppw 24625 . . . . . . . . . 10 ((𝐴 + 1) ∈ ℕ → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
6210, 61syl 17 . . . . . . . . 9 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
6360, 62eqtr3d 2550 . . . . . . . 8 (𝜑 → (1 σ (2↑𝐴)) = ((2↑(𝐴 + 1)) − 1))
6463oveq1d 6440 . . . . . . 7 (𝜑 → ((1 σ (2↑𝐴)) · (1 σ 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6554, 55, 643eqtr3d 2556 . . . . . 6 (𝜑 → (2 · ((2↑𝐴) · 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6638, 41, 653eqtrd 2552 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6728, 66breqtrrd 4509 . . . 4 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵))
68 gcdcom 14941 . . . . . 6 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ) → (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)))
6921, 19, 68syl2anc 690 . . . . 5 (𝜑 → (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)))
70 nnpw2evenALTV 40043 . . . . . . . . 9 ((𝐴 + 1) ∈ ℕ → (2↑(𝐴 + 1)) ∈ Even )
7110, 70syl 17 . . . . . . . 8 (𝜑 → (2↑(𝐴 + 1)) ∈ Even )
72 evenm1odd 39984 . . . . . . . 8 ((2↑(𝐴 + 1)) ∈ Even → ((2↑(𝐴 + 1)) − 1) ∈ Odd )
7371, 72syl 17 . . . . . . 7 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ Odd )
74 isodd7 40009 . . . . . . . 8 (((2↑(𝐴 + 1)) − 1) ∈ Odd ↔ (((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1))
7574simprbi 478 . . . . . . 7 (((2↑(𝐴 + 1)) − 1) ∈ Odd → (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1)
7673, 75syl 17 . . . . . 6 (𝜑 → (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1)
77 rpexp1i 15151 . . . . . . 7 ((2 ∈ ℤ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (𝐴 + 1) ∈ ℕ0) → ((2 gcd ((2↑(𝐴 + 1)) − 1)) = 1 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1))
7848, 21, 5, 77syl3anc 1317 . . . . . 6 (𝜑 → ((2 gcd ((2↑(𝐴 + 1)) − 1)) = 1 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1))
7976, 78mpd 15 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1)
8069, 79eqtrd 2548 . . . 4 (𝜑 → (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1)
81 coprmdvds 15084 . . . . 5 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵) ∧ (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1) → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵))
8221, 19, 49, 81syl3anc 1317 . . . 4 (𝜑 → ((((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵) ∧ (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1) → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵))
8367, 80, 82mp2and 710 . . 3 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵)
84 nndivdvds 14691 . . . 4 ((𝐵 ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ) → (((2↑(𝐴 + 1)) − 1) ∥ 𝐵 ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
8523, 18, 84syl2anc 690 . . 3 (𝜑 → (((2↑(𝐴 + 1)) − 1) ∥ 𝐵 ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
8683, 85mpbid 220 . 2 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ)
877, 18, 863jca 1234 1 (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1938   class class class wbr 4481  (class class class)co 6425  cc 9687  cr 9688  1c1 9690   + caddc 9692   · cmul 9694   < clt 9827  cmin 10015   / cdiv 10431  cn 10773  2c2 10823  0cn0 11045  cz 11116  cexp 12586  cdvds 14685   gcd cgcd 14922   σ csgm 24522   Even ceven 39969   Odd codd 39970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6721  ax-inf2 8295  ax-cnex 9745  ax-resscn 9746  ax-1cn 9747  ax-icn 9748  ax-addcl 9749  ax-addrcl 9750  ax-mulcl 9751  ax-mulrcl 9752  ax-mulcom 9753  ax-addass 9754  ax-mulass 9755  ax-distr 9756  ax-i2m1 9757  ax-1ne0 9758  ax-1rid 9759  ax-rnegex 9760  ax-rrecex 9761  ax-cnre 9762  ax-pre-lttri 9763  ax-pre-lttrn 9764  ax-pre-ltadd 9765  ax-pre-mulgt0 9766  ax-pre-sup 9767  ax-addf 9768  ax-mulf 9769
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-iin 4356  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-se 4892  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-isom 5698  df-riota 6387  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-of 6669  df-om 6832  df-1st 6932  df-2nd 6933  df-supp 7056  df-wrecs 7167  df-recs 7229  df-rdg 7267  df-1o 7321  df-2o 7322  df-oadd 7325  df-er 7503  df-map 7620  df-pm 7621  df-ixp 7669  df-en 7716  df-dom 7717  df-sdom 7718  df-fin 7719  df-fsupp 8033  df-fi 8074  df-sup 8105  df-inf 8106  df-oi 8172  df-card 8522  df-cda 8747  df-pnf 9829  df-mnf 9830  df-xr 9831  df-ltxr 9832  df-le 9833  df-sub 10017  df-neg 10018  df-div 10432  df-nn 10774  df-2 10832  df-3 10833  df-4 10834  df-5 10835  df-6 10836  df-7 10837  df-8 10838  df-9 10839  df-10OLD 10840  df-n0 11046  df-z 11117  df-dec 11232  df-uz 11424  df-q 11527  df-rp 11571  df-xneg 11684  df-xadd 11685  df-xmul 11686  df-ioo 11915  df-ioc 11916  df-ico 11917  df-icc 11918  df-fz 12062  df-fzo 12199  df-fl 12319  df-mod 12395  df-seq 12528  df-exp 12587  df-fac 12787  df-bc 12816  df-hash 12844  df-shft 13509  df-cj 13541  df-re 13542  df-im 13543  df-sqrt 13677  df-abs 13678  df-limsup 13905  df-clim 13928  df-rlim 13929  df-sum 14129  df-ef 14501  df-sin 14503  df-cos 14504  df-pi 14506  df-dvds 14686  df-gcd 14923  df-prm 15104  df-pc 15268  df-struct 15585  df-ndx 15586  df-slot 15587  df-base 15588  df-sets 15589  df-ress 15590  df-plusg 15669  df-mulr 15670  df-starv 15671  df-sca 15672  df-vsca 15673  df-ip 15674  df-tset 15675  df-ple 15676  df-ds 15679  df-unif 15680  df-hom 15681  df-cco 15682  df-rest 15794  df-topn 15795  df-0g 15813  df-gsum 15814  df-topgen 15815  df-pt 15816  df-prds 15819  df-xrs 15873  df-qtop 15879  df-imas 15880  df-xps 15883  df-mre 15965  df-mrc 15966  df-acs 15968  df-mgm 16961  df-sgrp 17003  df-mnd 17014  df-submnd 17055  df-mulg 17260  df-cntz 17469  df-cmn 17930  df-psmet 19467  df-xmet 19468  df-met 19469  df-bl 19470  df-mopn 19471  df-fbas 19472  df-fg 19473  df-cnfld 19476  df-top 20428  df-bases 20429  df-topon 20430  df-topsp 20431  df-cld 20540  df-ntr 20541  df-cls 20542  df-nei 20619  df-lp 20657  df-perf 20658  df-cn 20748  df-cnp 20749  df-haus 20836  df-tx 21082  df-hmeo 21275  df-fil 21367  df-fm 21459  df-flim 21460  df-flf 21461  df-xms 21841  df-ms 21842  df-tms 21843  df-cncf 22416  df-limc 23322  df-dv 23323  df-log 24005  df-cxp 24006  df-sgm 24528  df-even 39971  df-odd 39972
This theorem is referenced by:  perfectALTVlem2  40059
  Copyright terms: Public domain W3C validator