Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  perfectALTVlem2 Structured version   Visualization version   GIF version

Theorem perfectALTVlem2 41956
Description: Lemma for perfectALTV 41957. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by AV, 1-Jul-2020.)
Hypotheses
Ref Expression
perfectALTVlem.1 (𝜑𝐴 ∈ ℕ)
perfectALTVlem.2 (𝜑𝐵 ∈ ℕ)
perfectALTVlem.3 (𝜑𝐵 ∈ Odd )
perfectALTVlem.4 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
Assertion
Ref Expression
perfectALTVlem2 (𝜑 → (𝐵 ∈ ℙ ∧ 𝐵 = ((2↑(𝐴 + 1)) − 1)))

Proof of Theorem perfectALTVlem2
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 perfectALTVlem.2 . . . 4 (𝜑𝐵 ∈ ℕ)
2 1re 10077 . . . . . 6 1 ∈ ℝ
32a1i 11 . . . . 5 (𝜑 → 1 ∈ ℝ)
4 perfectALTVlem.1 . . . . . . . 8 (𝜑𝐴 ∈ ℕ)
5 perfectALTVlem.3 . . . . . . . 8 (𝜑𝐵 ∈ Odd )
6 perfectALTVlem.4 . . . . . . . 8 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
74, 1, 5, 6perfectALTVlem1 41955 . . . . . . 7 (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
87simp3d 1095 . . . . . 6 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ)
98nnred 11073 . . . . 5 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℝ)
101nnred 11073 . . . . 5 (𝜑𝐵 ∈ ℝ)
118nnge1d 11101 . . . . 5 (𝜑 → 1 ≤ (𝐵 / ((2↑(𝐴 + 1)) − 1)))
12 2cn 11129 . . . . . . . . . . 11 2 ∈ ℂ
13 exp1 12906 . . . . . . . . . . 11 (2 ∈ ℂ → (2↑1) = 2)
1412, 13ax-mp 5 . . . . . . . . . 10 (2↑1) = 2
15 df-2 11117 . . . . . . . . . 10 2 = (1 + 1)
1614, 15eqtri 2673 . . . . . . . . 9 (2↑1) = (1 + 1)
17 2re 11128 . . . . . . . . . . 11 2 ∈ ℝ
1817a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ)
19 1zzd 11446 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
204peano2nnd 11075 . . . . . . . . . . 11 (𝜑 → (𝐴 + 1) ∈ ℕ)
2120nnzd 11519 . . . . . . . . . 10 (𝜑 → (𝐴 + 1) ∈ ℤ)
22 1lt2 11232 . . . . . . . . . . 11 1 < 2
2322a1i 11 . . . . . . . . . 10 (𝜑 → 1 < 2)
244nnrpd 11908 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ+)
25 ltaddrp 11905 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 1 < (1 + 𝐴))
262, 24, 25sylancr 696 . . . . . . . . . . 11 (𝜑 → 1 < (1 + 𝐴))
27 ax-1cn 10032 . . . . . . . . . . . 12 1 ∈ ℂ
284nncnd 11074 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
29 addcom 10260 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + 𝐴) = (𝐴 + 1))
3027, 28, 29sylancr 696 . . . . . . . . . . 11 (𝜑 → (1 + 𝐴) = (𝐴 + 1))
3126, 30breqtrd 4711 . . . . . . . . . 10 (𝜑 → 1 < (𝐴 + 1))
32 ltexp2a 12952 . . . . . . . . . 10 (((2 ∈ ℝ ∧ 1 ∈ ℤ ∧ (𝐴 + 1) ∈ ℤ) ∧ (1 < 2 ∧ 1 < (𝐴 + 1))) → (2↑1) < (2↑(𝐴 + 1)))
3318, 19, 21, 23, 31, 32syl32anc 1374 . . . . . . . . 9 (𝜑 → (2↑1) < (2↑(𝐴 + 1)))
3416, 33syl5eqbrr 4721 . . . . . . . 8 (𝜑 → (1 + 1) < (2↑(𝐴 + 1)))
357simp1d 1093 . . . . . . . . . 10 (𝜑 → (2↑(𝐴 + 1)) ∈ ℕ)
3635nnred 11073 . . . . . . . . 9 (𝜑 → (2↑(𝐴 + 1)) ∈ ℝ)
373, 3, 36ltaddsubd 10665 . . . . . . . 8 (𝜑 → ((1 + 1) < (2↑(𝐴 + 1)) ↔ 1 < ((2↑(𝐴 + 1)) − 1)))
3834, 37mpbid 222 . . . . . . 7 (𝜑 → 1 < ((2↑(𝐴 + 1)) − 1))
39 1rp 11874 . . . . . . . . 9 1 ∈ ℝ+
4039a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
41 peano2rem 10386 . . . . . . . . . . 11 ((2↑(𝐴 + 1)) ∈ ℝ → ((2↑(𝐴 + 1)) − 1) ∈ ℝ)
4236, 41syl 17 . . . . . . . . . 10 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℝ)
43 expgt1 12938 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (𝐴 + 1) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(𝐴 + 1)))
4418, 20, 23, 43syl3anc 1366 . . . . . . . . . . 11 (𝜑 → 1 < (2↑(𝐴 + 1)))
45 posdif 10559 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ (2↑(𝐴 + 1)) ∈ ℝ) → (1 < (2↑(𝐴 + 1)) ↔ 0 < ((2↑(𝐴 + 1)) − 1)))
462, 36, 45sylancr 696 . . . . . . . . . . 11 (𝜑 → (1 < (2↑(𝐴 + 1)) ↔ 0 < ((2↑(𝐴 + 1)) − 1)))
4744, 46mpbid 222 . . . . . . . . . 10 (𝜑 → 0 < ((2↑(𝐴 + 1)) − 1))
4842, 47jca 553 . . . . . . . . 9 (𝜑 → (((2↑(𝐴 + 1)) − 1) ∈ ℝ ∧ 0 < ((2↑(𝐴 + 1)) − 1)))
49 elrp 11872 . . . . . . . . 9 (((2↑(𝐴 + 1)) − 1) ∈ ℝ+ ↔ (((2↑(𝐴 + 1)) − 1) ∈ ℝ ∧ 0 < ((2↑(𝐴 + 1)) − 1)))
5048, 49sylibr 224 . . . . . . . 8 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℝ+)
51 nnrp 11880 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
521, 51syl 17 . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
5340, 50, 52ltdiv2d 11933 . . . . . . 7 (𝜑 → (1 < ((2↑(𝐴 + 1)) − 1) ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) < (𝐵 / 1)))
5438, 53mpbid 222 . . . . . 6 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) < (𝐵 / 1))
551nncnd 11074 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
5655div1d 10831 . . . . . 6 (𝜑 → (𝐵 / 1) = 𝐵)
5754, 56breqtrd 4711 . . . . 5 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) < 𝐵)
583, 9, 10, 11, 57lelttrd 10233 . . . 4 (𝜑 → 1 < 𝐵)
59 eluz2b2 11799 . . . 4 (𝐵 ∈ (ℤ‘2) ↔ (𝐵 ∈ ℕ ∧ 1 < 𝐵))
601, 58, 59sylanbrc 699 . . 3 (𝜑𝐵 ∈ (ℤ‘2))
61 fzfid 12812 . . . . . . . . . . . 12 (𝜑 → (1...𝐵) ∈ Fin)
62 dvdsssfz1 15087 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ⊆ (1...𝐵))
631, 62syl 17 . . . . . . . . . . . 12 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ⊆ (1...𝐵))
64 ssfi 8221 . . . . . . . . . . . 12 (((1...𝐵) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝐵} ⊆ (1...𝐵)) → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ∈ Fin)
6561, 63, 64syl2anc 694 . . . . . . . . . . 11 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ∈ Fin)
6665ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ∈ Fin)
67 ssrab2 3720 . . . . . . . . . . . . 13 {𝑥 ∈ ℕ ∣ 𝑥𝐵} ⊆ ℕ
6867a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {𝑥 ∈ ℕ ∣ 𝑥𝐵} ⊆ ℕ)
6968sselda 3636 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℕ)
7069nnred 11073 . . . . . . . . . 10 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℝ)
7169nnnn0d 11389 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℕ0)
7271nn0ge0d 11392 . . . . . . . . . 10 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 0 ≤ 𝑘)
73 df-tp 4215 . . . . . . . . . . . 12 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {𝑛})
74 prssi 4385 . . . . . . . . . . . . . . 15 (((𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ ∧ 𝐵 ∈ ℕ) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ⊆ ℕ)
758, 1, 74syl2anc 694 . . . . . . . . . . . . . 14 (𝜑 → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ⊆ ℕ)
7675ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ⊆ ℕ)
77 simplrl 817 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑛 ∈ ℕ)
7877snssd 4372 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {𝑛} ⊆ ℕ)
7976, 78unssd 3822 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {𝑛}) ⊆ ℕ)
8073, 79syl5eqss 3682 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} ⊆ ℕ)
81 eltpi 4261 . . . . . . . . . . . . 13 (𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} → (𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑥 = 𝐵𝑥 = 𝑛))
827simp2d 1094 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℕ)
8382nnzd 11519 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℤ)
848nnzd 11519 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℤ)
85 dvdsmul2 15051 . . . . . . . . . . . . . . . . . 18 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℤ) → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∥ (((2↑(𝐴 + 1)) − 1) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
8683, 84, 85syl2anc 694 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∥ (((2↑(𝐴 + 1)) − 1) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
8782nncnd 11074 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℂ)
8882nnne0d 11103 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2↑(𝐴 + 1)) − 1) ≠ 0)
8955, 87, 88divcan2d 10841 . . . . . . . . . . . . . . . . 17 (𝜑 → (((2↑(𝐴 + 1)) − 1) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) = 𝐵)
9086, 89breqtrd 4711 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∥ 𝐵)
91 breq1 4688 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) → (𝑥𝐵 ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∥ 𝐵))
9290, 91syl5ibrcom 237 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) → 𝑥𝐵))
9392ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) → 𝑥𝐵))
941nnzd 11519 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℤ)
95 iddvds 15042 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℤ → 𝐵𝐵)
9694, 95syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐵𝐵)
97 breq1 4688 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐵 → (𝑥𝐵𝐵𝐵))
9896, 97syl5ibrcom 237 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 = 𝐵𝑥𝐵))
9998ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (𝑥 = 𝐵𝑥𝐵))
100 simplrr 818 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑛𝐵)
101 breq1 4688 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → (𝑥𝐵𝑛𝐵))
102100, 101syl5ibrcom 237 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (𝑥 = 𝑛𝑥𝐵))
10393, 99, 1023jaod 1432 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ((𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑥 = 𝐵𝑥 = 𝑛) → 𝑥𝐵))
10481, 103syl5 34 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} → 𝑥𝐵))
105104imp 444 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}) → 𝑥𝐵)
10680, 105ssrabdv 3714 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} ⊆ {𝑥 ∈ ℕ ∣ 𝑥𝐵})
10766, 70, 72, 106fsumless 14572 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}𝑘 ≤ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘)
108 simpr 476 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵})
109 disjsn 4278 . . . . . . . . . . . 12 (({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∩ {𝑛}) = ∅ ↔ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵})
110108, 109sylibr 224 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∩ {𝑛}) = ∅)
11173a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {𝑛}))
112 tpfi 8277 . . . . . . . . . . . 12 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} ∈ Fin
113112a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛} ∈ Fin)
11480sselda 3636 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}) → 𝑘 ∈ ℕ)
115114nncnd 11074 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) ∧ 𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}) → 𝑘 ∈ ℂ)
116110, 111, 113, 115fsumsplit 14515 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}𝑘 = (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 + Σ𝑘 ∈ {𝑛}𝑘))
1178nncnd 11074 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℂ)
118 id 22 . . . . . . . . . . . . . . . 16 (𝑘 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) → 𝑘 = (𝐵 / ((2↑(𝐴 + 1)) − 1)))
119118sumsn 14519 . . . . . . . . . . . . . . 15 (((𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℂ) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}𝑘 = (𝐵 / ((2↑(𝐴 + 1)) − 1)))
1208, 117, 119syl2anc 694 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}𝑘 = (𝐵 / ((2↑(𝐴 + 1)) − 1)))
121 id 22 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐵𝑘 = 𝐵)
122121sumsn 14519 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℕ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝐵}𝑘 = 𝐵)
1231, 55, 122syl2anc 694 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ {𝐵}𝑘 = 𝐵)
124120, 123oveq12d 6708 . . . . . . . . . . . . 13 (𝜑 → (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}𝑘 + Σ𝑘 ∈ {𝐵}𝑘) = ((𝐵 / ((2↑(𝐴 + 1)) − 1)) + 𝐵))
125 incom 3838 . . . . . . . . . . . . . . 15 ({𝐵} ∩ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}) = ({(𝐵 / ((2↑(𝐴 + 1)) − 1))} ∩ {𝐵})
1269, 57gtned 10210 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ≠ (𝐵 / ((2↑(𝐴 + 1)) − 1)))
127 disjsn2 4279 . . . . . . . . . . . . . . . 16 (𝐵 ≠ (𝐵 / ((2↑(𝐴 + 1)) − 1)) → ({𝐵} ∩ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}) = ∅)
128126, 127syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ({𝐵} ∩ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}) = ∅)
129125, 128syl5eqr 2699 . . . . . . . . . . . . . 14 (𝜑 → ({(𝐵 / ((2↑(𝐴 + 1)) − 1))} ∩ {𝐵}) = ∅)
130 df-pr 4213 . . . . . . . . . . . . . . 15 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1))} ∪ {𝐵})
131130a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1))} ∪ {𝐵}))
132 prfi 8276 . . . . . . . . . . . . . . 15 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∈ Fin
133132a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∈ Fin)
13475sselda 3636 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑘 ∈ ℕ)
135134nncnd 11074 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑘 ∈ ℂ)
136129, 131, 133, 135fsumsplit 14515 . . . . . . . . . . . . 13 (𝜑 → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 = (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1))}𝑘 + Σ𝑘 ∈ {𝐵}𝑘))
13787, 55mulcld 10098 . . . . . . . . . . . . . . 15 (𝜑 → (((2↑(𝐴 + 1)) − 1) · 𝐵) ∈ ℂ)
13855, 137, 87, 88divdird 10877 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵 + (((2↑(𝐴 + 1)) − 1) · 𝐵)) / ((2↑(𝐴 + 1)) − 1)) = ((𝐵 / ((2↑(𝐴 + 1)) − 1)) + ((((2↑(𝐴 + 1)) − 1) · 𝐵) / ((2↑(𝐴 + 1)) − 1))))
13935nncnd 11074 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2↑(𝐴 + 1)) ∈ ℂ)
14027a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 1 ∈ ℂ)
141139, 140, 55subdird 10525 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((2↑(𝐴 + 1)) − 1) · 𝐵) = (((2↑(𝐴 + 1)) · 𝐵) − (1 · 𝐵)))
14255mulid2d 10096 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 · 𝐵) = 𝐵)
143142oveq2d 6706 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((2↑(𝐴 + 1)) · 𝐵) − (1 · 𝐵)) = (((2↑(𝐴 + 1)) · 𝐵) − 𝐵))
144141, 143eqtrd 2685 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((2↑(𝐴 + 1)) − 1) · 𝐵) = (((2↑(𝐴 + 1)) · 𝐵) − 𝐵))
145144oveq2d 6706 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 + (((2↑(𝐴 + 1)) − 1) · 𝐵)) = (𝐵 + (((2↑(𝐴 + 1)) · 𝐵) − 𝐵)))
146139, 55mulcld 10098 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) ∈ ℂ)
14755, 146pncan3d 10433 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 + (((2↑(𝐴 + 1)) · 𝐵) − 𝐵)) = ((2↑(𝐴 + 1)) · 𝐵))
148145, 147eqtrd 2685 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 + (((2↑(𝐴 + 1)) − 1) · 𝐵)) = ((2↑(𝐴 + 1)) · 𝐵))
149148oveq1d 6705 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 + (((2↑(𝐴 + 1)) − 1) · 𝐵)) / ((2↑(𝐴 + 1)) − 1)) = (((2↑(𝐴 + 1)) · 𝐵) / ((2↑(𝐴 + 1)) − 1)))
150139, 55, 87, 88divassd 10874 . . . . . . . . . . . . . . 15 (𝜑 → (((2↑(𝐴 + 1)) · 𝐵) / ((2↑(𝐴 + 1)) − 1)) = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
151149, 150eqtrd 2685 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵 + (((2↑(𝐴 + 1)) − 1) · 𝐵)) / ((2↑(𝐴 + 1)) − 1)) = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
15255, 87, 88divcan3d 10844 . . . . . . . . . . . . . . 15 (𝜑 → ((((2↑(𝐴 + 1)) − 1) · 𝐵) / ((2↑(𝐴 + 1)) − 1)) = 𝐵)
153152oveq2d 6706 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵 / ((2↑(𝐴 + 1)) − 1)) + ((((2↑(𝐴 + 1)) − 1) · 𝐵) / ((2↑(𝐴 + 1)) − 1))) = ((𝐵 / ((2↑(𝐴 + 1)) − 1)) + 𝐵))
154138, 151, 1533eqtr3d 2693 . . . . . . . . . . . . 13 (𝜑 → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) = ((𝐵 / ((2↑(𝐴 + 1)) − 1)) + 𝐵))
155124, 136, 1543eqtr4d 2695 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
156155ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
15777nncnd 11074 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑛 ∈ ℂ)
158 id 22 . . . . . . . . . . . . 13 (𝑘 = 𝑛𝑘 = 𝑛)
159158sumsn 14519 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑛 ∈ ℂ) → Σ𝑘 ∈ {𝑛}𝑘 = 𝑛)
160157, 157, 159syl2anc 694 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {𝑛}𝑘 = 𝑛)
161156, 160oveq12d 6708 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 + Σ𝑘 ∈ {𝑛}𝑘) = (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛))
162116, 161eqtrd 2685 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 𝑛}𝑘 = (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛))
1634nnnn0d 11389 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℕ0)
164 expp1 12907 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝐴 ∈ ℕ0) → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
16512, 163, 164sylancr 696 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
166 2nn 11223 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ
167 nnexpcl 12913 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (2↑𝐴) ∈ ℕ)
168166, 163, 167sylancr 696 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2↑𝐴) ∈ ℕ)
169168nncnd 11074 . . . . . . . . . . . . . . . . 17 (𝜑 → (2↑𝐴) ∈ ℂ)
170 mulcom 10060 . . . . . . . . . . . . . . . . 17 (((2↑𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
171169, 12, 170sylancl 695 . . . . . . . . . . . . . . . 16 (𝜑 → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
172165, 171eqtrd 2685 . . . . . . . . . . . . . . 15 (𝜑 → (2↑(𝐴 + 1)) = (2 · (2↑𝐴)))
173172oveq1d 6705 . . . . . . . . . . . . . 14 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = ((2 · (2↑𝐴)) · 𝐵))
17412a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
175174, 169, 55mulassd 10101 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (2↑𝐴)) · 𝐵) = (2 · ((2↑𝐴) · 𝐵)))
176 isodd7 41902 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ Odd ↔ (𝐵 ∈ ℤ ∧ (2 gcd 𝐵) = 1))
177 simpr 476 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℤ ∧ (2 gcd 𝐵) = 1) → (2 gcd 𝐵) = 1)
178176, 177sylbi 207 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ Odd → (2 gcd 𝐵) = 1)
1795, 178syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 gcd 𝐵) = 1)
180 2z 11447 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
181180a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ∈ ℤ)
182 rpexp1i 15480 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
183181, 94, 163, 182syl3anc 1366 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
184179, 183mpd 15 . . . . . . . . . . . . . . . 16 (𝜑 → ((2↑𝐴) gcd 𝐵) = 1)
185 sgmmul 24971 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ ((2↑𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ((2↑𝐴) gcd 𝐵) = 1)) → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
186140, 168, 1, 184, 185syl13anc 1368 . . . . . . . . . . . . . . 15 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
187 pncan 10325 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
18828, 27, 187sylancl 695 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐴 + 1) − 1) = 𝐴)
189188oveq2d 6706 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2↑((𝐴 + 1) − 1)) = (2↑𝐴))
190189oveq2d 6706 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = (1 σ (2↑𝐴)))
191 1sgm2ppw 24970 . . . . . . . . . . . . . . . . . 18 ((𝐴 + 1) ∈ ℕ → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
19220, 191syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
193190, 192eqtr3d 2687 . . . . . . . . . . . . . . . 16 (𝜑 → (1 σ (2↑𝐴)) = ((2↑(𝐴 + 1)) − 1))
194193oveq1d 6705 . . . . . . . . . . . . . . 15 (𝜑 → ((1 σ (2↑𝐴)) · (1 σ 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
195186, 6, 1943eqtr3d 2693 . . . . . . . . . . . . . 14 (𝜑 → (2 · ((2↑𝐴) · 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
196173, 175, 1953eqtrd 2689 . . . . . . . . . . . . 13 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
197196oveq1d 6705 . . . . . . . . . . . 12 (𝜑 → (((2↑(𝐴 + 1)) · 𝐵) / ((2↑(𝐴 + 1)) − 1)) = ((((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)) / ((2↑(𝐴 + 1)) − 1)))
198 1nn0 11346 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
199 sgmnncl 24918 . . . . . . . . . . . . . . 15 ((1 ∈ ℕ0𝐵 ∈ ℕ) → (1 σ 𝐵) ∈ ℕ)
200198, 1, 199sylancr 696 . . . . . . . . . . . . . 14 (𝜑 → (1 σ 𝐵) ∈ ℕ)
201200nncnd 11074 . . . . . . . . . . . . 13 (𝜑 → (1 σ 𝐵) ∈ ℂ)
202201, 87, 88divcan3d 10844 . . . . . . . . . . . 12 (𝜑 → ((((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)) / ((2↑(𝐴 + 1)) − 1)) = (1 σ 𝐵))
203197, 150, 2023eqtr3d 2693 . . . . . . . . . . 11 (𝜑 → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) = (1 σ 𝐵))
204 sgmval 24913 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝐵 ∈ ℕ) → (1 σ 𝐵) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵} (𝑘𝑐1))
20527, 1, 204sylancr 696 . . . . . . . . . . 11 (𝜑 → (1 σ 𝐵) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵} (𝑘𝑐1))
206 simpr 476 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵})
20767, 206sseldi 3634 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℕ)
208207nncnd 11074 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℂ)
209208cxp1d 24497 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → (𝑘𝑐1) = 𝑘)
210209sumeq2dv 14477 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵} (𝑘𝑐1) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘)
211203, 205, 2103eqtrrd 2690 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘 = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
212211ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘 = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
213107, 162, 2123brtr3d 4716 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
21436, 9remulcld 10108 . . . . . . . . . . 11 (𝜑 → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) ∈ ℝ)
215214ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) ∈ ℝ)
21677nnrpd 11908 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑛 ∈ ℝ+)
217215, 216ltaddrpd 11943 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) < (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛))
21877nnred 11073 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → 𝑛 ∈ ℝ)
219215, 218readdcld 10107 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛) ∈ ℝ)
220215, 219ltnled 10222 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) < (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛) ↔ ¬ (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1)))))
221217, 220mpbid 222 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) ∧ ¬ 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}) → ¬ (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 𝑛) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
222213, 221condan 852 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) → 𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵})
223 elpri 4230 . . . . . . 7 (𝑛 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵))
224222, 223syl 17 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑛𝐵)) → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵))
225224expr 642 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵)))
226225ralrimiva 2995 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵)))
2273, 58gtned 10210 . . . . . . . . . 10 (𝜑𝐵 ≠ 1)
228227necomd 2878 . . . . . . . . 9 (𝜑 → 1 ≠ 𝐵)
229 1nn 11069 . . . . . . . . . . . . 13 1 ∈ ℕ
230229a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℕ)
231 1dvds 15043 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → 1 ∥ 𝐵)
23294, 231syl 17 . . . . . . . . . . . 12 (𝜑 → 1 ∥ 𝐵)
233 breq1 4688 . . . . . . . . . . . . . 14 (𝑛 = 1 → (𝑛𝐵 ↔ 1 ∥ 𝐵))
234 eqeq1 2655 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ↔ 1 = (𝐵 / ((2↑(𝐴 + 1)) − 1))))
235 eqeq1 2655 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝑛 = 𝐵 ↔ 1 = 𝐵))
236234, 235orbi12d 746 . . . . . . . . . . . . . 14 (𝑛 = 1 → ((𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵) ↔ (1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 1 = 𝐵)))
237233, 236imbi12d 333 . . . . . . . . . . . . 13 (𝑛 = 1 → ((𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵)) ↔ (1 ∥ 𝐵 → (1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 1 = 𝐵))))
238237rspcv 3336 . . . . . . . . . . . 12 (1 ∈ ℕ → (∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵)) → (1 ∥ 𝐵 → (1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 1 = 𝐵))))
239230, 226, 232, 238syl3c 66 . . . . . . . . . . 11 (𝜑 → (1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 1 = 𝐵))
240239ord 391 . . . . . . . . . 10 (𝜑 → (¬ 1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) → 1 = 𝐵))
241240necon1ad 2840 . . . . . . . . 9 (𝜑 → (1 ≠ 𝐵 → 1 = (𝐵 / ((2↑(𝐴 + 1)) − 1))))
242228, 241mpd 15 . . . . . . . 8 (𝜑 → 1 = (𝐵 / ((2↑(𝐴 + 1)) − 1)))
243242eqeq2d 2661 . . . . . . 7 (𝜑 → (𝑛 = 1 ↔ 𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1))))
244243orbi1d 739 . . . . . 6 (𝜑 → ((𝑛 = 1 ∨ 𝑛 = 𝐵) ↔ (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵)))
245244imbi2d 329 . . . . 5 (𝜑 → ((𝑛𝐵 → (𝑛 = 1 ∨ 𝑛 = 𝐵)) ↔ (𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵))))
246245ralbidv 3015 . . . 4 (𝜑 → (∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = 1 ∨ 𝑛 = 𝐵)) ↔ ∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑛 = 𝐵))))
247226, 246mpbird 247 . . 3 (𝜑 → ∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = 1 ∨ 𝑛 = 𝐵)))
248 isprm2 15442 . . 3 (𝐵 ∈ ℙ ↔ (𝐵 ∈ (ℤ‘2) ∧ ∀𝑛 ∈ ℕ (𝑛𝐵 → (𝑛 = 1 ∨ 𝑛 = 𝐵))))
24960, 247, 248sylanbrc 699 . 2 (𝜑𝐵 ∈ ℙ)
250214ltp1d 10992 . . . 4 (𝜑 → ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) < (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1))
251 peano2re 10247 . . . . . 6 (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) ∈ ℝ → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ∈ ℝ)
252214, 251syl 17 . . . . 5 (𝜑 → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ∈ ℝ)
253214, 252ltnled 10222 . . . 4 (𝜑 → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) < (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ↔ ¬ (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1)))))
254250, 253mpbid 222 . . 3 (𝜑 → ¬ (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
255207nnred 11073 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℝ)
256207nnnn0d 11389 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 𝑘 ∈ ℕ0)
257256nn0ge0d 11392 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}) → 0 ≤ 𝑘)
258 df-tp 4215 . . . . . . . . . 10 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {1})
259 snssi 4371 . . . . . . . . . . . 12 (1 ∈ ℕ → {1} ⊆ ℕ)
260229, 259mp1i 13 . . . . . . . . . . 11 (𝜑 → {1} ⊆ ℕ)
26175, 260unssd 3822 . . . . . . . . . 10 (𝜑 → ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {1}) ⊆ ℕ)
262258, 261syl5eqss 3682 . . . . . . . . 9 (𝜑 → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} ⊆ ℕ)
263 eltpi 4261 . . . . . . . . . . 11 (𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} → (𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑥 = 𝐵𝑥 = 1))
264 breq1 4688 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝑥𝐵 ↔ 1 ∥ 𝐵))
265232, 264syl5ibrcom 237 . . . . . . . . . . . 12 (𝜑 → (𝑥 = 1 → 𝑥𝐵))
26692, 98, 2653jaod 1432 . . . . . . . . . . 11 (𝜑 → ((𝑥 = (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∨ 𝑥 = 𝐵𝑥 = 1) → 𝑥𝐵))
267263, 266syl5 34 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} → 𝑥𝐵))
268267imp 444 . . . . . . . . 9 ((𝜑𝑥 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}) → 𝑥𝐵)
269262, 268ssrabdv 3714 . . . . . . . 8 (𝜑 → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} ⊆ {𝑥 ∈ ℕ ∣ 𝑥𝐵})
27065, 255, 257, 269fsumless 14572 . . . . . . 7 (𝜑 → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}𝑘 ≤ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘)
271270adantr 480 . . . . . 6 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}𝑘 ≤ Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘)
27255, 87, 88diveq1ad 10848 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 / ((2↑(𝐴 + 1)) − 1)) = 1 ↔ 𝐵 = ((2↑(𝐴 + 1)) − 1)))
273272necon3bid 2867 . . . . . . . . . . . 12 (𝜑 → ((𝐵 / ((2↑(𝐴 + 1)) − 1)) ≠ 1 ↔ 𝐵 ≠ ((2↑(𝐴 + 1)) − 1)))
274273biimpar 501 . . . . . . . . . . 11 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ≠ 1)
275274necomd 2878 . . . . . . . . . 10 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → 1 ≠ (𝐵 / ((2↑(𝐴 + 1)) − 1)))
276228adantr 480 . . . . . . . . . 10 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → 1 ≠ 𝐵)
277275, 276nelprd 4236 . . . . . . . . 9 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → ¬ 1 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵})
278 disjsn 4278 . . . . . . . . 9 (({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∩ {1}) = ∅ ↔ ¬ 1 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵})
279277, 278sylibr 224 . . . . . . . 8 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∩ {1}) = ∅)
280258a1i 11 . . . . . . . 8 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} = ({(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵} ∪ {1}))
281 tpfi 8277 . . . . . . . . 9 {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} ∈ Fin
282281a1i 11 . . . . . . . 8 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} ∈ Fin)
283262adantr 480 . . . . . . . . . 10 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1} ⊆ ℕ)
284283sselda 3636 . . . . . . . . 9 (((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) ∧ 𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}) → 𝑘 ∈ ℕ)
285284nncnd 11074 . . . . . . . 8 (((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) ∧ 𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}) → 𝑘 ∈ ℂ)
286279, 280, 282, 285fsumsplit 14515 . . . . . . 7 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}𝑘 = (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 + Σ𝑘 ∈ {1}𝑘))
287 id 22 . . . . . . . . . . 11 (𝑘 = 1 → 𝑘 = 1)
288287sumsn 14519 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 1 ∈ ℂ) → Σ𝑘 ∈ {1}𝑘 = 1)
289140, 27, 288sylancl 695 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ {1}𝑘 = 1)
290155, 289oveq12d 6708 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 + Σ𝑘 ∈ {1}𝑘) = (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1))
291290adantr 480 . . . . . . 7 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → (Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵}𝑘 + Σ𝑘 ∈ {1}𝑘) = (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1))
292286, 291eqtrd 2685 . . . . . 6 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → Σ𝑘 ∈ {(𝐵 / ((2↑(𝐴 + 1)) − 1)), 𝐵, 1}𝑘 = (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1))
293211adantr 480 . . . . . 6 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝐵}𝑘 = ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
294271, 292, 2933brtr3d 4716 . . . . 5 ((𝜑𝐵 ≠ ((2↑(𝐴 + 1)) − 1)) → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))))
295294ex 449 . . . 4 (𝜑 → (𝐵 ≠ ((2↑(𝐴 + 1)) − 1) → (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1)))))
296295necon1bd 2841 . . 3 (𝜑 → (¬ (((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) + 1) ≤ ((2↑(𝐴 + 1)) · (𝐵 / ((2↑(𝐴 + 1)) − 1))) → 𝐵 = ((2↑(𝐴 + 1)) − 1)))
297254, 296mpd 15 . 2 (𝜑𝐵 = ((2↑(𝐴 + 1)) − 1))
298249, 297jca 553 1 (𝜑 → (𝐵 ∈ ℙ ∧ 𝐵 = ((2↑(𝐴 + 1)) − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3o 1053   = wceq 1523  wcel 2030  wne 2823  wral 2941  {crab 2945  cun 3605  cin 3606  wss 3607  c0 3948  {csn 4210  {cpr 4212  {ctp 4214   class class class wbr 4685  cfv 5926  (class class class)co 6690  Fincfn 7997  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  0cn0 11330  cz 11415  cuz 11725  +crp 11870  ...cfz 12364  cexp 12900  Σcsu 14460  cdvds 15027   gcd cgcd 15263  cprime 15432  𝑐ccxp 24347   σ csgm 24867   Odd codd 41863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-dvds 15028  df-gcd 15264  df-prm 15433  df-pc 15589  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-cxp 24349  df-sgm 24873  df-even 41864  df-odd 41865
This theorem is referenced by:  perfectALTV  41957
  Copyright terms: Public domain W3C validator