MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfectlem1 Structured version   Visualization version   GIF version

Theorem perfectlem1 25807
Description: Lemma for perfect 25809. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
perfectlem.1 (𝜑𝐴 ∈ ℕ)
perfectlem.2 (𝜑𝐵 ∈ ℕ)
perfectlem.3 (𝜑 → ¬ 2 ∥ 𝐵)
perfectlem.4 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
Assertion
Ref Expression
perfectlem1 (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))

Proof of Theorem perfectlem1
StepHypRef Expression
1 2nn 11713 . . 3 2 ∈ ℕ
2 perfectlem.1 . . . . 5 (𝜑𝐴 ∈ ℕ)
32nnnn0d 11958 . . . 4 (𝜑𝐴 ∈ ℕ0)
4 peano2nn0 11940 . . . 4 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ0)
53, 4syl 17 . . 3 (𝜑 → (𝐴 + 1) ∈ ℕ0)
6 nnexpcl 13445 . . 3 ((2 ∈ ℕ ∧ (𝐴 + 1) ∈ ℕ0) → (2↑(𝐴 + 1)) ∈ ℕ)
71, 5, 6sylancr 589 . 2 (𝜑 → (2↑(𝐴 + 1)) ∈ ℕ)
8 2re 11714 . . . 4 2 ∈ ℝ
92peano2nnd 11657 . . . 4 (𝜑 → (𝐴 + 1) ∈ ℕ)
10 1lt2 11811 . . . . 5 1 < 2
1110a1i 11 . . . 4 (𝜑 → 1 < 2)
12 expgt1 13470 . . . 4 ((2 ∈ ℝ ∧ (𝐴 + 1) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(𝐴 + 1)))
138, 9, 11, 12mp3an2i 1462 . . 3 (𝜑 → 1 < (2↑(𝐴 + 1)))
14 1nn 11651 . . . 4 1 ∈ ℕ
15 nnsub 11684 . . . 4 ((1 ∈ ℕ ∧ (2↑(𝐴 + 1)) ∈ ℕ) → (1 < (2↑(𝐴 + 1)) ↔ ((2↑(𝐴 + 1)) − 1) ∈ ℕ))
1614, 7, 15sylancr 589 . . 3 (𝜑 → (1 < (2↑(𝐴 + 1)) ↔ ((2↑(𝐴 + 1)) − 1) ∈ ℕ))
1713, 16mpbid 234 . 2 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℕ)
187nnzd 12089 . . . . . . 7 (𝜑 → (2↑(𝐴 + 1)) ∈ ℤ)
19 peano2zm 12028 . . . . . . 7 ((2↑(𝐴 + 1)) ∈ ℤ → ((2↑(𝐴 + 1)) − 1) ∈ ℤ)
2018, 19syl 17 . . . . . 6 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℤ)
21 1nn0 11916 . . . . . . . 8 1 ∈ ℕ0
22 perfectlem.2 . . . . . . . 8 (𝜑𝐵 ∈ ℕ)
23 sgmnncl 25726 . . . . . . . 8 ((1 ∈ ℕ0𝐵 ∈ ℕ) → (1 σ 𝐵) ∈ ℕ)
2421, 22, 23sylancr 589 . . . . . . 7 (𝜑 → (1 σ 𝐵) ∈ ℕ)
2524nnzd 12089 . . . . . 6 (𝜑 → (1 σ 𝐵) ∈ ℤ)
26 dvdsmul1 15633 . . . . . 6 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (1 σ 𝐵) ∈ ℤ) → ((2↑(𝐴 + 1)) − 1) ∥ (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
2720, 25, 26syl2anc 586 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
28 2cn 11715 . . . . . . . . 9 2 ∈ ℂ
29 expp1 13439 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝐴 ∈ ℕ0) → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
3028, 3, 29sylancr 589 . . . . . . . 8 (𝜑 → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
31 nnexpcl 13445 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (2↑𝐴) ∈ ℕ)
321, 3, 31sylancr 589 . . . . . . . . . 10 (𝜑 → (2↑𝐴) ∈ ℕ)
3332nncnd 11656 . . . . . . . . 9 (𝜑 → (2↑𝐴) ∈ ℂ)
34 mulcom 10625 . . . . . . . . 9 (((2↑𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
3533, 28, 34sylancl 588 . . . . . . . 8 (𝜑 → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
3630, 35eqtrd 2858 . . . . . . 7 (𝜑 → (2↑(𝐴 + 1)) = (2 · (2↑𝐴)))
3736oveq1d 7173 . . . . . 6 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = ((2 · (2↑𝐴)) · 𝐵))
3828a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
3922nncnd 11656 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4038, 33, 39mulassd 10666 . . . . . 6 (𝜑 → ((2 · (2↑𝐴)) · 𝐵) = (2 · ((2↑𝐴) · 𝐵)))
41 ax-1cn 10597 . . . . . . . . 9 1 ∈ ℂ
4241a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
43 perfectlem.3 . . . . . . . . . 10 (𝜑 → ¬ 2 ∥ 𝐵)
44 2prm 16038 . . . . . . . . . . 11 2 ∈ ℙ
4522nnzd 12089 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
46 coprm 16057 . . . . . . . . . . 11 ((2 ∈ ℙ ∧ 𝐵 ∈ ℤ) → (¬ 2 ∥ 𝐵 ↔ (2 gcd 𝐵) = 1))
4744, 45, 46sylancr 589 . . . . . . . . . 10 (𝜑 → (¬ 2 ∥ 𝐵 ↔ (2 gcd 𝐵) = 1))
4843, 47mpbid 234 . . . . . . . . 9 (𝜑 → (2 gcd 𝐵) = 1)
49 2z 12017 . . . . . . . . . 10 2 ∈ ℤ
50 rpexp1i 16067 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
5149, 45, 3, 50mp3an2i 1462 . . . . . . . . 9 (𝜑 → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
5248, 51mpd 15 . . . . . . . 8 (𝜑 → ((2↑𝐴) gcd 𝐵) = 1)
53 sgmmul 25779 . . . . . . . 8 ((1 ∈ ℂ ∧ ((2↑𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ((2↑𝐴) gcd 𝐵) = 1)) → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
5442, 32, 22, 52, 53syl13anc 1368 . . . . . . 7 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
55 perfectlem.4 . . . . . . 7 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
562nncnd 11656 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
57 pncan 10894 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
5856, 41, 57sylancl 588 . . . . . . . . . . 11 (𝜑 → ((𝐴 + 1) − 1) = 𝐴)
5958oveq2d 7174 . . . . . . . . . 10 (𝜑 → (2↑((𝐴 + 1) − 1)) = (2↑𝐴))
6059oveq2d 7174 . . . . . . . . 9 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = (1 σ (2↑𝐴)))
61 1sgm2ppw 25778 . . . . . . . . . 10 ((𝐴 + 1) ∈ ℕ → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
629, 61syl 17 . . . . . . . . 9 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
6360, 62eqtr3d 2860 . . . . . . . 8 (𝜑 → (1 σ (2↑𝐴)) = ((2↑(𝐴 + 1)) − 1))
6463oveq1d 7173 . . . . . . 7 (𝜑 → ((1 σ (2↑𝐴)) · (1 σ 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6554, 55, 643eqtr3d 2866 . . . . . 6 (𝜑 → (2 · ((2↑𝐴) · 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6637, 40, 653eqtrd 2862 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6727, 66breqtrrd 5096 . . . 4 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵))
68 gcdcom 15864 . . . . . 6 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ) → (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)))
6920, 18, 68syl2anc 586 . . . . 5 (𝜑 → (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)))
70 iddvdsexp 15635 . . . . . . . . 9 ((2 ∈ ℤ ∧ (𝐴 + 1) ∈ ℕ) → 2 ∥ (2↑(𝐴 + 1)))
7149, 9, 70sylancr 589 . . . . . . . 8 (𝜑 → 2 ∥ (2↑(𝐴 + 1)))
72 n2dvds1 15719 . . . . . . . . . 10 ¬ 2 ∥ 1
7349a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℤ)
74 1zzd 12016 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
7573, 18, 743jca 1124 . . . . . . . . . . 11 (𝜑 → (2 ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ ∧ 1 ∈ ℤ))
76 dvdssub2 15653 . . . . . . . . . . 11 (((2 ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ ∧ 1 ∈ ℤ) ∧ 2 ∥ ((2↑(𝐴 + 1)) − 1)) → (2 ∥ (2↑(𝐴 + 1)) ↔ 2 ∥ 1))
7775, 76sylan 582 . . . . . . . . . 10 ((𝜑 ∧ 2 ∥ ((2↑(𝐴 + 1)) − 1)) → (2 ∥ (2↑(𝐴 + 1)) ↔ 2 ∥ 1))
7872, 77mtbiri 329 . . . . . . . . 9 ((𝜑 ∧ 2 ∥ ((2↑(𝐴 + 1)) − 1)) → ¬ 2 ∥ (2↑(𝐴 + 1)))
7978ex 415 . . . . . . . 8 (𝜑 → (2 ∥ ((2↑(𝐴 + 1)) − 1) → ¬ 2 ∥ (2↑(𝐴 + 1))))
8071, 79mt2d 138 . . . . . . 7 (𝜑 → ¬ 2 ∥ ((2↑(𝐴 + 1)) − 1))
81 coprm 16057 . . . . . . . 8 ((2 ∈ ℙ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℤ) → (¬ 2 ∥ ((2↑(𝐴 + 1)) − 1) ↔ (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1))
8244, 20, 81sylancr 589 . . . . . . 7 (𝜑 → (¬ 2 ∥ ((2↑(𝐴 + 1)) − 1) ↔ (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1))
8380, 82mpbid 234 . . . . . 6 (𝜑 → (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1)
84 rpexp1i 16067 . . . . . . 7 ((2 ∈ ℤ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (𝐴 + 1) ∈ ℕ0) → ((2 gcd ((2↑(𝐴 + 1)) − 1)) = 1 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1))
8549, 20, 5, 84mp3an2i 1462 . . . . . 6 (𝜑 → ((2 gcd ((2↑(𝐴 + 1)) − 1)) = 1 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1))
8683, 85mpd 15 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1)
8769, 86eqtrd 2858 . . . 4 (𝜑 → (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1)
88 coprmdvds 15999 . . . . 5 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵) ∧ (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1) → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵))
8920, 18, 45, 88syl3anc 1367 . . . 4 (𝜑 → ((((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵) ∧ (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1) → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵))
9067, 87, 89mp2and 697 . . 3 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵)
91 nndivdvds 15618 . . . 4 ((𝐵 ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ) → (((2↑(𝐴 + 1)) − 1) ∥ 𝐵 ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
9222, 17, 91syl2anc 586 . . 3 (𝜑 → (((2↑(𝐴 + 1)) − 1) ∥ 𝐵 ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
9390, 92mpbid 234 . 2 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ)
947, 17, 933jca 1124 1 (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5068  (class class class)co 7158  cc 10537  cr 10538  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  0cn0 11900  cz 11984  cexp 13432  cdvds 15609   gcd cgcd 15845  cprime 16017   σ csgm 25675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-dvds 15610  df-gcd 15846  df-prm 16018  df-pc 16176  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-log 25142  df-cxp 25143  df-sgm 25681
This theorem is referenced by:  perfectlem2  25808
  Copyright terms: Public domain W3C validator