MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perpneq Structured version   Visualization version   GIF version

Theorem perpneq 26494
Description: Two perpendicular lines are different. Theorem 8.14 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 18-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
isperp.b (𝜑𝐵 ∈ ran 𝐿)
perpcom.1 (𝜑𝐴(⟂G‘𝐺)𝐵)
Assertion
Ref Expression
perpneq (𝜑𝐴𝐵)

Proof of Theorem perpneq
Dummy variables 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp.p . . . . . . 7 𝑃 = (Base‘𝐺)
2 isperp.i . . . . . . 7 𝐼 = (Itv‘𝐺)
3 isperp.l . . . . . . 7 𝐿 = (LineG‘𝐺)
4 isperp.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐺 ∈ TarskiG)
65ad5antr 732 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐺 ∈ TarskiG)
74ad5antr 732 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐺 ∈ TarskiG)
8 isperp.a . . . . . . . . . 10 (𝜑𝐴 ∈ ran 𝐿)
98ad5antr 732 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐴 ∈ ran 𝐿)
10 simpr 487 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥 ∈ (𝐴𝐵))
1110elin1d 4174 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥𝐴)
1211ad4antr 730 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝐴)
131, 3, 2, 7, 9, 12tglnpt 26329 . . . . . . . 8 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝑃)
1413adantl4r 753 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝑃)
15 isperp.b . . . . . . . . . 10 (𝜑𝐵 ∈ ran 𝐿)
1615ad5antr 732 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐵 ∈ ran 𝐿)
17 simplr 767 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝐵)
181, 3, 2, 7, 16, 17tglnpt 26329 . . . . . . . 8 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝑃)
1918adantl4r 753 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝑃)
20 simp-4r 782 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝐴)
211, 3, 2, 7, 9, 20tglnpt 26329 . . . . . . . 8 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝑃)
2221adantl4r 753 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝑃)
23 isperp.d . . . . . . . . 9 = (dist‘𝐺)
24 eqid 2821 . . . . . . . . 9 (pInvG‘𝐺) = (pInvG‘𝐺)
25 simp-4r 782 . . . . . . . . . 10 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝐴)
26 simplr 767 . . . . . . . . . 10 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝐵)
27 simp-5r 784 . . . . . . . . . 10 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺))
28 id 22 . . . . . . . . . . . . 13 (𝑦 = 𝑢𝑦 = 𝑢)
29 eqidd 2822 . . . . . . . . . . . . 13 (𝑦 = 𝑢𝑥 = 𝑥)
30 eqidd 2822 . . . . . . . . . . . . 13 (𝑦 = 𝑢𝑧 = 𝑧)
3128, 29, 30s3eqd 14220 . . . . . . . . . . . 12 (𝑦 = 𝑢 → ⟨“𝑦𝑥𝑧”⟩ = ⟨“𝑢𝑥𝑧”⟩)
3231eleq1d 2897 . . . . . . . . . . 11 (𝑦 = 𝑢 → (⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝑢𝑥𝑧”⟩ ∈ (∟G‘𝐺)))
33 eqidd 2822 . . . . . . . . . . . . 13 (𝑧 = 𝑣𝑢 = 𝑢)
34 eqidd 2822 . . . . . . . . . . . . 13 (𝑧 = 𝑣𝑥 = 𝑥)
35 id 22 . . . . . . . . . . . . 13 (𝑧 = 𝑣𝑧 = 𝑣)
3633, 34, 35s3eqd 14220 . . . . . . . . . . . 12 (𝑧 = 𝑣 → ⟨“𝑢𝑥𝑧”⟩ = ⟨“𝑢𝑥𝑣”⟩)
3736eleq1d 2897 . . . . . . . . . . 11 (𝑧 = 𝑣 → (⟨“𝑢𝑥𝑧”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
3832, 37rspc2va 3633 . . . . . . . . . 10 (((𝑢𝐴𝑣𝐵) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
3925, 26, 27, 38syl21anc 835 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
40 simpllr 774 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝑢)
4140necomd 3071 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝑥)
4241adantl4r 753 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝑥)
43 simpr 487 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝑣)
4443necomd 3071 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝑥)
4544adantl4r 753 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝑥)
461, 23, 2, 3, 24, 6, 22, 14, 19, 39, 42, 45ragncol 26489 . . . . . . . 8 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → ¬ (𝑣 ∈ (𝑢𝐿𝑥) ∨ 𝑢 = 𝑥))
471, 3, 2, 6, 22, 14, 19, 46ncolrot2 26343 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → ¬ (𝑥 ∈ (𝑣𝐿𝑢) ∨ 𝑣 = 𝑢))
481, 2, 3, 6, 14, 19, 22, 14, 47tglineneq 26424 . . . . . 6 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → (𝑥𝐿𝑣) ≠ (𝑢𝐿𝑥))
4948necomd 3071 . . . . 5 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → (𝑢𝐿𝑥) ≠ (𝑥𝐿𝑣))
501, 2, 3, 7, 21, 13, 41, 41, 9, 20, 12tglinethru 26416 . . . . . 6 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐴 = (𝑢𝐿𝑥))
5150adantl4r 753 . . . . 5 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐴 = (𝑢𝐿𝑥))
5210elin2d 4175 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥𝐵)
5352ad4antr 730 . . . . . . 7 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝐵)
541, 2, 3, 7, 13, 18, 43, 43, 16, 53, 17tglinethru 26416 . . . . . 6 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐵 = (𝑥𝐿𝑣))
5554adantl4r 753 . . . . 5 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐵 = (𝑥𝐿𝑣))
5649, 51, 553netr4d 3093 . . . 4 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐴𝐵)
5715adantr 483 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐵 ∈ ran 𝐿)
581, 2, 3, 5, 57, 52tglnpt2 26421 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → ∃𝑣𝐵 𝑥𝑣)
5958ad5ant12 754 . . . 4 (((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) → ∃𝑣𝐵 𝑥𝑣)
6056, 59r19.29a 3289 . . 3 (((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) → 𝐴𝐵)
618adantr 483 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐴 ∈ ran 𝐿)
621, 2, 3, 5, 61, 11tglnpt2 26421 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → ∃𝑢𝐴 𝑥𝑢)
6362adantr 483 . . 3 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) → ∃𝑢𝐴 𝑥𝑢)
6460, 63r19.29a 3289 . 2 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) → 𝐴𝐵)
65 perpcom.1 . . 3 (𝜑𝐴(⟂G‘𝐺)𝐵)
661, 23, 2, 3, 4, 8, 15isperp 26492 . . 3 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)))
6765, 66mpbid 234 . 2 (𝜑 → ∃𝑥 ∈ (𝐴𝐵)∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺))
6864, 67r19.29a 3289 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  cin 3934   class class class wbr 5058  ran crn 5550  cfv 6349  (class class class)co 7150  ⟨“cs3 14198  Basecbs 16477  distcds 16568  TarskiGcstrkg 26210  Itvcitv 26216  LineGclng 26217  pInvGcmir 26432  ∟Gcrag 26473  ⟂Gcperpg 26475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-concat 13917  df-s1 13944  df-s2 14204  df-s3 14205  df-trkgc 26228  df-trkgb 26229  df-trkgcb 26230  df-trkg 26233  df-cgrg 26291  df-mir 26433  df-rag 26474  df-perpg 26476
This theorem is referenced by:  isperp2  26495  footne  26503  lmieu  26564
  Copyright terms: Public domain W3C validator