![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pexmidlem2N | Structured version Visualization version GIF version |
Description: Lemma for pexmidN 35776. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pexmidlem.l | ⊢ ≤ = (le‘𝐾) |
pexmidlem.j | ⊢ ∨ = (join‘𝐾) |
pexmidlem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pexmidlem.p | ⊢ + = (+𝑃‘𝐾) |
pexmidlem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
pexmidlem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
Ref | Expression |
---|---|
pexmidlem2N | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1228 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝐾 ∈ HL) | |
2 | hllat 35171 | . . 3 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝐾 ∈ Lat) |
4 | simpl2 1230 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑋 ⊆ 𝐴) | |
5 | pexmidlem.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | pexmidlem.o | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
7 | 5, 6 | polssatN 35715 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
8 | 1, 4, 7 | syl2anc 696 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
9 | simpr1 1234 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑟 ∈ 𝑋) | |
10 | simpr2 1236 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑞 ∈ ( ⊥ ‘𝑋)) | |
11 | simpl3 1232 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑝 ∈ 𝐴) | |
12 | simpr3 1238 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑝 ≤ (𝑟 ∨ 𝑞)) | |
13 | pexmidlem.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
14 | pexmidlem.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
15 | pexmidlem.p | . . 3 ⊢ + = (+𝑃‘𝐾) | |
16 | 13, 14, 5, 15 | elpaddri 35609 | . 2 ⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘𝑋) ⊆ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋)) ∧ (𝑝 ∈ 𝐴 ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) |
17 | 3, 4, 8, 9, 10, 11, 12, 16 | syl322anc 1505 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋) ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 {csn 4321 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 lecple 16170 joincjn 17165 Latclat 17266 Atomscatm 35071 HLchlt 35158 +𝑃cpadd 35602 ⊥𝑃cpolN 35709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-riotaBAD 34760 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-undef 7569 df-preset 17149 df-poset 17167 df-lub 17195 df-glb 17196 df-join 17197 df-meet 17198 df-p1 17261 df-lat 17267 df-clat 17329 df-oposet 34984 df-ol 34986 df-oml 34987 df-ats 35075 df-atl 35106 df-cvlat 35130 df-hlat 35159 df-psubsp 35310 df-pmap 35311 df-padd 35603 df-polarityN 35710 |
This theorem is referenced by: pexmidlem3N 35779 |
Copyright terms: Public domain | W3C validator |