Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem2N Structured version   Visualization version   GIF version

Theorem pexmidlem2N 34078
Description: Lemma for pexmidN 34076. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidlem.l = (le‘𝐾)
pexmidlem.j = (join‘𝐾)
pexmidlem.a 𝐴 = (Atoms‘𝐾)
pexmidlem.p + = (+𝑃𝐾)
pexmidlem.o = (⊥𝑃𝐾)
pexmidlem.m 𝑀 = (𝑋 + {𝑝})
Assertion
Ref Expression
pexmidlem2N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝑝 ∈ (𝑋 + ( 𝑋)))

Proof of Theorem pexmidlem2N
StepHypRef Expression
1 simpl1 1056 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝐾 ∈ HL)
2 hllat 33471 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
31, 2syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝐾 ∈ Lat)
4 simpl2 1057 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝑋𝐴)
5 pexmidlem.a . . . 4 𝐴 = (Atoms‘𝐾)
6 pexmidlem.o . . . 4 = (⊥𝑃𝐾)
75, 6polssatN 34015 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
81, 4, 7syl2anc 690 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → ( 𝑋) ⊆ 𝐴)
9 simpr1 1059 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝑟𝑋)
10 simpr2 1060 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝑞 ∈ ( 𝑋))
11 simpl3 1058 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝑝𝐴)
12 simpr3 1061 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝑝 (𝑟 𝑞))
13 pexmidlem.l . . 3 = (le‘𝐾)
14 pexmidlem.j . . 3 = (join‘𝐾)
15 pexmidlem.p . . 3 + = (+𝑃𝐾)
1613, 14, 5, 15elpaddri 33909 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴 ∧ ( 𝑋) ⊆ 𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋)) ∧ (𝑝𝐴𝑝 (𝑟 𝑞))) → 𝑝 ∈ (𝑋 + ( 𝑋)))
173, 4, 8, 9, 10, 11, 12, 16syl322anc 1345 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝑝 ∈ (𝑋 + ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  wss 3539  {csn 4124   class class class wbr 4577  cfv 5790  (class class class)co 6527  lecple 15721  joincjn 16713  Latclat 16814  Atomscatm 33371  HLchlt 33458  +𝑃cpadd 33902  𝑃cpolN 34009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-riotaBAD 33060
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7036  df-2nd 7037  df-undef 7263  df-preset 16697  df-poset 16715  df-lub 16743  df-glb 16744  df-join 16745  df-meet 16746  df-p1 16809  df-lat 16815  df-clat 16877  df-oposet 33284  df-ol 33286  df-oml 33287  df-ats 33375  df-atl 33406  df-cvlat 33430  df-hlat 33459  df-psubsp 33610  df-pmap 33611  df-padd 33903  df-polarityN 34010
This theorem is referenced by:  pexmidlem3N  34079
  Copyright terms: Public domain W3C validator