Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem3N Structured version   Visualization version   GIF version

Theorem pexmidlem3N 34075
Description: Lemma for pexmidN 34072. Use atom exchange hlatexch1 33498 to swap 𝑝 and 𝑞. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidlem.l = (le‘𝐾)
pexmidlem.j = (join‘𝐾)
pexmidlem.a 𝐴 = (Atoms‘𝐾)
pexmidlem.p + = (+𝑃𝐾)
pexmidlem.o = (⊥𝑃𝐾)
pexmidlem.m 𝑀 = (𝑋 + {𝑝})
Assertion
Ref Expression
pexmidlem3N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋)) ∧ 𝑞 (𝑟 𝑝)) → 𝑝 ∈ (𝑋 + ( 𝑋)))

Proof of Theorem pexmidlem3N
StepHypRef Expression
1 simp1 1053 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋)) ∧ 𝑞 (𝑟 𝑝)) → (𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴))
2 simp2l 1079 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋)) ∧ 𝑞 (𝑟 𝑝)) → 𝑟𝑋)
3 simp2r 1080 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋)) ∧ 𝑞 (𝑟 𝑝)) → 𝑞 ∈ ( 𝑋))
4 simpl1 1056 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝐾 ∈ HL)
5 simpl2 1057 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑋𝐴)
6 pexmidlem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
7 pexmidlem.o . . . . . . 7 = (⊥𝑃𝐾)
86, 7polssatN 34011 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
94, 5, 8syl2anc 690 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → ( 𝑋) ⊆ 𝐴)
10 simprr 791 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑞 ∈ ( 𝑋))
119, 10sseldd 3564 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑞𝐴)
12 simpl3 1058 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑝𝐴)
13 simprl 789 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑟𝑋)
145, 13sseldd 3564 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑟𝐴)
15 pexmidlem.l . . . . . 6 = (le‘𝐾)
16 pexmidlem.j . . . . . 6 = (join‘𝐾)
17 pexmidlem.p . . . . . 6 + = (+𝑃𝐾)
18 pexmidlem.m . . . . . 6 𝑀 = (𝑋 + {𝑝})
1915, 16, 6, 17, 7, 18pexmidlem1N 34073 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑞𝑟)
20193adantl3 1211 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → 𝑞𝑟)
2115, 16, 6hlatexch1 33498 . . . 4 ((𝐾 ∈ HL ∧ (𝑞𝐴𝑝𝐴𝑟𝐴) ∧ 𝑞𝑟) → (𝑞 (𝑟 𝑝) → 𝑝 (𝑟 𝑞)))
224, 11, 12, 14, 20, 21syl131anc 1330 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋))) → (𝑞 (𝑟 𝑝) → 𝑝 (𝑟 𝑞)))
23223impia 1252 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋)) ∧ 𝑞 (𝑟 𝑝)) → 𝑝 (𝑟 𝑞))
2415, 16, 6, 17, 7, 18pexmidlem2N 34074 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋) ∧ 𝑝 (𝑟 𝑞))) → 𝑝 ∈ (𝑋 + ( 𝑋)))
251, 2, 3, 23, 24syl13anc 1319 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋)) ∧ 𝑞 (𝑟 𝑝)) → 𝑝 ∈ (𝑋 + ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1975  wne 2775  wss 3535  {csn 4120   class class class wbr 4573  cfv 5786  (class class class)co 6523  lecple 15717  joincjn 16709  Atomscatm 33367  HLchlt 33454  +𝑃cpadd 33898  𝑃cpolN 34005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-riotaBAD 33056
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-iun 4447  df-iin 4448  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-1st 7032  df-2nd 7033  df-undef 7259  df-preset 16693  df-poset 16711  df-plt 16723  df-lub 16739  df-glb 16740  df-join 16741  df-meet 16742  df-p0 16804  df-p1 16805  df-lat 16811  df-clat 16873  df-oposet 33280  df-ol 33282  df-oml 33283  df-covers 33370  df-ats 33371  df-atl 33402  df-cvlat 33426  df-hlat 33455  df-psubsp 33606  df-pmap 33607  df-padd 33899  df-polarityN 34006
This theorem is referenced by:  pexmidlem4N  34076
  Copyright terms: Public domain W3C validator