Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfxccatin12lem1 Structured version   Visualization version   GIF version

Theorem pfxccatin12lem1 40084
Description: Lemma 1 for pfxccatin12 40086. Could replace swrdccatin12lem2b 13283. (Contributed by AV, 9-May-2020.)
Assertion
Ref Expression
pfxccatin12lem1 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))

Proof of Theorem pfxccatin12lem1
StepHypRef Expression
1 elfz2 12159 . . . . 5 (𝑀 ∈ (0...𝐿) ↔ ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)))
2 zsubcl 11252 . . . . . . 7 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
323adant1 1071 . . . . . 6 ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
43adantr 479 . . . . 5 (((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)) → (𝐿𝑀) ∈ ℤ)
51, 4sylbi 205 . . . 4 (𝑀 ∈ (0...𝐿) → (𝐿𝑀) ∈ ℤ)
65adantr 479 . . 3 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐿𝑀) ∈ ℤ)
7 elfzonelfzo 12391 . . 3 ((𝐿𝑀) ∈ ℤ → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
86, 7syl 17 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
9 elfz2nn0 12255 . . . . . . . 8 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
10 nn0cn 11149 . . . . . . . . . 10 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
11 nn0cn 11149 . . . . . . . . . 10 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
12 elfzelz 12168 . . . . . . . . . . . 12 (𝑁 ∈ (𝐿...𝑋) → 𝑁 ∈ ℤ)
13 zcn 11215 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
14 subcl 10131 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐿𝑀) ∈ ℂ)
1514ancoms 467 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐿𝑀) ∈ ℂ)
1615addid1d 10087 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → ((𝐿𝑀) + 0) = (𝐿𝑀))
1716eqcomd 2615 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐿𝑀) = ((𝐿𝑀) + 0))
1817adantl 480 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → (𝐿𝑀) = ((𝐿𝑀) + 0))
19 simprr 791 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → 𝐿 ∈ ℂ)
20 simpl 471 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → 𝑀 ∈ ℂ)
2120adantl 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → 𝑀 ∈ ℂ)
22 simpl 471 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → 𝑁 ∈ ℂ)
2319, 21, 22npncan3d 10279 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → ((𝐿𝑀) + (𝑁𝐿)) = (𝑁𝑀))
2423eqcomd 2615 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → (𝑁𝑀) = ((𝐿𝑀) + (𝑁𝐿)))
2518, 24oveq12d 6545 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿))))
2625ex 448 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
2712, 13, 263syl 18 . . . . . . . . . . 11 (𝑁 ∈ (𝐿...𝑋) → ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
2827com12 32 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝑁 ∈ (𝐿...𝑋) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
2910, 11, 28syl2an 492 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ (𝐿...𝑋) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
30293adant3 1073 . . . . . . . 8 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ (𝐿...𝑋) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
319, 30sylbi 205 . . . . . . 7 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...𝑋) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
3231imp 443 . . . . . 6 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿))))
3332eleq2d 2672 . . . . 5 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) ↔ 𝐾 ∈ (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
3433biimpa 499 . . . 4 (((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) ∧ 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))) → 𝐾 ∈ (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿))))
35 0zd 11222 . . . . . 6 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 0 ∈ ℤ)
36 elfz2 12159 . . . . . . . 8 (𝑁 ∈ (𝐿...𝑋) ↔ ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)))
37 zsubcl 11252 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
3837ancoms 467 . . . . . . . . . 10 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
39383adant2 1072 . . . . . . . . 9 ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
4039adantr 479 . . . . . . . 8 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → (𝑁𝐿) ∈ ℤ)
4136, 40sylbi 205 . . . . . . 7 (𝑁 ∈ (𝐿...𝑋) → (𝑁𝐿) ∈ ℤ)
4241adantl 480 . . . . . 6 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝑁𝐿) ∈ ℤ)
436, 35, 423jca 1234 . . . . 5 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐿𝑀) ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ))
4443adantr 479 . . . 4 (((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) ∧ 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))) → ((𝐿𝑀) ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ))
45 fzosubel2 12350 . . . 4 ((𝐾 ∈ (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿))) ∧ ((𝐿𝑀) ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ)) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿)))
4634, 44, 45syl2anc 690 . . 3 (((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) ∧ 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿)))
4746ex 448 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))
488, 47syld 45 1 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4577  (class class class)co 6527  cc 9790  0cc0 9792   + caddc 9795  cle 9931  cmin 10117  0cn0 11139  cz 11210  ...cfz 12152  ..^cfzo 12289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-fzo 12290
This theorem is referenced by:  pfxccatin12lem2  40085
  Copyright terms: Public domain W3C validator