Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfxccatin12lem2 Structured version   Visualization version   GIF version

Theorem pfxccatin12lem2 40088
Description: Lemma 2 for pfxccatin12 40089. Could replace swrdccatin12lem2 13282. (Contributed by AV, 9-May-2020.)
Hypothesis
Ref Expression
pfxccatin12.l 𝐿 = (#‘𝐴)
Assertion
Ref Expression
pfxccatin12lem2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (#‘(𝐴 substr ⟨𝑀, 𝐿⟩))))))

Proof of Theorem pfxccatin12lem2
StepHypRef Expression
1 pfxccatin12.l . . . . . 6 𝐿 = (#‘𝐴)
21swrdccatin12lem2c 13281 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵)))))
32adantr 479 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵)))))
4 simprl 789 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐾 ∈ (0..^(𝑁𝑀)))
5 swrdfv 13218 . . . 4 ((((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵)))) ∧ 𝐾 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)))
63, 4, 5syl2anc 690 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)))
7 elfzoelz 12290 . . . . . . . 8 (𝐾 ∈ (0..^(𝑁𝑀)) → 𝐾 ∈ ℤ)
8 elfz2nn0 12251 . . . . . . . . . 10 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
9 nn0cn 11145 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
10 nn0cn 11145 . . . . . . . . . . . . . . . 16 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
119, 10anim12i 587 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ))
12 zcn 11211 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
13 subcl 10127 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐿𝑀) ∈ ℂ)
1413ancoms 467 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐿𝑀) ∈ ℂ)
1514anim2i 590 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → (𝐾 ∈ ℂ ∧ (𝐿𝑀) ∈ ℂ))
1615ancoms 467 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (𝐾 ∈ ℂ ∧ (𝐿𝑀) ∈ ℂ))
17 subcl 10127 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℂ ∧ (𝐿𝑀) ∈ ℂ) → (𝐾 − (𝐿𝑀)) ∈ ℂ)
1816, 17syl 17 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (𝐾 − (𝐿𝑀)) ∈ ℂ)
1918addid1d 10083 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → ((𝐾 − (𝐿𝑀)) + 0) = (𝐾 − (𝐿𝑀)))
20 simpr 475 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → 𝐾 ∈ ℂ)
21 simplr 787 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → 𝐿 ∈ ℂ)
22 simpll 785 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → 𝑀 ∈ ℂ)
2320, 21, 22subsub3d 10269 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (𝐾 − (𝐿𝑀)) = ((𝐾 + 𝑀) − 𝐿))
2419, 23eqtr2d 2640 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → ((𝐾 + 𝑀) − 𝐿) = ((𝐾 − (𝐿𝑀)) + 0))
2511, 12, 24syl2an 492 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝐾 ∈ ℤ) → ((𝐾 + 𝑀) − 𝐿) = ((𝐾 − (𝐿𝑀)) + 0))
26 oveq2 6531 . . . . . . . . . . . . . . . 16 ((#‘𝐴) = 𝐿 → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 + 𝑀) − 𝐿))
2726eqcoms 2613 . . . . . . . . . . . . . . 15 (𝐿 = (#‘𝐴) → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 + 𝑀) − 𝐿))
2827eqeq1d 2607 . . . . . . . . . . . . . 14 (𝐿 = (#‘𝐴) → (((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0) ↔ ((𝐾 + 𝑀) − 𝐿) = ((𝐾 − (𝐿𝑀)) + 0)))
2925, 28syl5ibr 234 . . . . . . . . . . . . 13 (𝐿 = (#‘𝐴) → (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝐾 ∈ ℤ) → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
301, 29ax-mp 5 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝐾 ∈ ℤ) → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0))
3130ex 448 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
32313adant3 1073 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
338, 32sylbi 205 . . . . . . . . 9 (𝑀 ∈ (0...𝐿) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
3433ad2antrl 759 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
357, 34syl5com 31 . . . . . . 7 (𝐾 ∈ (0..^(𝑁𝑀)) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
3635adantr 479 . . . . . 6 ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
3736impcom 444 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐾 + 𝑀) − (#‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0))
3837fveq2d 6088 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐵‘((𝐾 + 𝑀) − (#‘𝐴))) = (𝐵‘((𝐾 − (𝐿𝑀)) + 0)))
39 simpll 785 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
40 swrdccatin12lem2a 13278 . . . . . . . . 9 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (#‘𝐵)))))
4140adantl 480 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (#‘𝐵)))))
4241imp 443 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (#‘𝐵))))
43 id 22 . . . . . . . . . . 11 ((#‘𝐴) = 𝐿 → (#‘𝐴) = 𝐿)
44 oveq1 6530 . . . . . . . . . . 11 ((#‘𝐴) = 𝐿 → ((#‘𝐴) + (#‘𝐵)) = (𝐿 + (#‘𝐵)))
4543, 44oveq12d 6541 . . . . . . . . . 10 ((#‘𝐴) = 𝐿 → ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵))) = (𝐿..^(𝐿 + (#‘𝐵))))
4645eleq2d 2668 . . . . . . . . 9 ((#‘𝐴) = 𝐿 → ((𝐾 + 𝑀) ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵))) ↔ (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (#‘𝐵)))))
4746eqcoms 2613 . . . . . . . 8 (𝐿 = (#‘𝐴) → ((𝐾 + 𝑀) ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵))) ↔ (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (#‘𝐵)))))
481, 47ax-mp 5 . . . . . . 7 ((𝐾 + 𝑀) ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵))) ↔ (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (#‘𝐵))))
4942, 48sylibr 222 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 + 𝑀) ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵))))
50 df-3an 1032 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵)))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝐾 + 𝑀) ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵)))))
5139, 49, 50sylanbrc 694 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵)))))
52 ccatval2 13157 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ ((#‘𝐴)..^((#‘𝐴) + (#‘𝐵)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = (𝐵‘((𝐾 + 𝑀) − (#‘𝐴))))
5351, 52syl 17 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = (𝐵‘((𝐾 + 𝑀) − (#‘𝐴))))
54 simplr 787 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝐵 ∈ Word 𝑉)
5554adantr 479 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐵 ∈ Word 𝑉)
56 lencl 13121 . . . . . . . . . 10 (𝐵 ∈ Word 𝑉 → (#‘𝐵) ∈ ℕ0)
57 elfzel2 12162 . . . . . . . . . . . 12 (𝑀 ∈ (0...𝐿) → 𝐿 ∈ ℤ)
58 zsubcl 11248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
5958ancoms 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
6059adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐿𝑁) → (𝑁𝐿) ∈ ℤ)
61 zre 11210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
62 zre 11210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
63 subge0 10386 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (0 ≤ (𝑁𝐿) ↔ 𝐿𝑁))
6461, 62, 63syl2anr 493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ (𝑁𝐿) ↔ 𝐿𝑁))
6564biimprd 236 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿𝑁 → 0 ≤ (𝑁𝐿)))
6665imp 443 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐿𝑁) → 0 ≤ (𝑁𝐿))
67 elnn0z 11219 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁𝐿) ∈ ℕ0 ↔ ((𝑁𝐿) ∈ ℤ ∧ 0 ≤ (𝑁𝐿)))
6860, 66, 67sylanbrc 694 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐿𝑁) → (𝑁𝐿) ∈ ℕ0)
6968expcom 449 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿𝑁 → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℕ0))
7069adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵))) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℕ0))
7170expcomd 452 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵))) → (𝑁 ∈ ℤ → (𝐿 ∈ ℤ → (𝑁𝐿) ∈ ℕ0)))
7271com12 32 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → ((𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵))) → (𝐿 ∈ ℤ → (𝑁𝐿) ∈ ℕ0)))
73723ad2ant3 1076 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵))) → (𝐿 ∈ ℤ → (𝑁𝐿) ∈ ℕ0)))
7473imp 443 . . . . . . . . . . . . . . . . . . . 20 (((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵)))) → (𝐿 ∈ ℤ → (𝑁𝐿) ∈ ℕ0))
7574com12 32 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℤ → (((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵)))) → (𝑁𝐿) ∈ ℕ0))
7675adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) → (((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵)))) → (𝑁𝐿) ∈ ℕ0))
7776imp 443 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵))))) → (𝑁𝐿) ∈ ℕ0)
78 simplr 787 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵))))) → (#‘𝐵) ∈ ℕ0)
79613ad2ant3 1076 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
8079adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℝ)
8162adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) → 𝐿 ∈ ℝ)
8281adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐿 ∈ ℝ)
83 nn0re 11144 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝐵) ∈ ℕ0 → (#‘𝐵) ∈ ℝ)
8483adantl 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) → (#‘𝐵) ∈ ℝ)
8584adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (#‘𝐵) ∈ ℝ)
86 lesubadd2 10346 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (#‘𝐵) ∈ ℝ) → ((𝑁𝐿) ≤ (#‘𝐵) ↔ 𝑁 ≤ (𝐿 + (#‘𝐵))))
8786biimprd 236 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (#‘𝐵) ∈ ℝ) → (𝑁 ≤ (𝐿 + (#‘𝐵)) → (𝑁𝐿) ≤ (#‘𝐵)))
8880, 82, 85, 87syl3anc 1317 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ≤ (𝐿 + (#‘𝐵)) → (𝑁𝐿) ≤ (#‘𝐵)))
8988ex 448 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) → ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ (𝐿 + (#‘𝐵)) → (𝑁𝐿) ≤ (#‘𝐵))))
9089com13 85 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ≤ (𝐿 + (#‘𝐵)) → ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) → (𝑁𝐿) ≤ (#‘𝐵))))
9190adantl 480 . . . . . . . . . . . . . . . . . . 19 ((𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵))) → ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) → (𝑁𝐿) ≤ (#‘𝐵))))
9291impcom 444 . . . . . . . . . . . . . . . . . 18 (((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵)))) → ((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) → (𝑁𝐿) ≤ (#‘𝐵)))
9392impcom 444 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵))))) → (𝑁𝐿) ≤ (#‘𝐵))
9477, 78, 933jca 1234 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵))))) → ((𝑁𝐿) ∈ ℕ0 ∧ (#‘𝐵) ∈ ℕ0 ∧ (𝑁𝐿) ≤ (#‘𝐵)))
9594ex 448 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) → (((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵)))) → ((𝑁𝐿) ∈ ℕ0 ∧ (#‘𝐵) ∈ ℕ0 ∧ (𝑁𝐿) ≤ (#‘𝐵))))
96 elfz2 12155 . . . . . . . . . . . . . . 15 (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) ↔ ((𝐿 ∈ ℤ ∧ (𝐿 + (#‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (#‘𝐵)))))
97 elfz2nn0 12251 . . . . . . . . . . . . . . 15 ((𝑁𝐿) ∈ (0...(#‘𝐵)) ↔ ((𝑁𝐿) ∈ ℕ0 ∧ (#‘𝐵) ∈ ℕ0 ∧ (𝑁𝐿) ≤ (#‘𝐵)))
9895, 96, 973imtr4g 283 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℤ ∧ (#‘𝐵) ∈ ℕ0) → (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → (𝑁𝐿) ∈ (0...(#‘𝐵))))
9998ex 448 . . . . . . . . . . . . 13 (𝐿 ∈ ℤ → ((#‘𝐵) ∈ ℕ0 → (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → (𝑁𝐿) ∈ (0...(#‘𝐵)))))
10099com23 83 . . . . . . . . . . . 12 (𝐿 ∈ ℤ → (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → ((#‘𝐵) ∈ ℕ0 → (𝑁𝐿) ∈ (0...(#‘𝐵)))))
10157, 100syl 17 . . . . . . . . . . 11 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → ((#‘𝐵) ∈ ℕ0 → (𝑁𝐿) ∈ (0...(#‘𝐵)))))
102101imp 443 . . . . . . . . . 10 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → ((#‘𝐵) ∈ ℕ0 → (𝑁𝐿) ∈ (0...(#‘𝐵))))
10356, 102syl5com 31 . . . . . . . . 9 (𝐵 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → (𝑁𝐿) ∈ (0...(#‘𝐵))))
104103adantl 480 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → (𝑁𝐿) ∈ (0...(#‘𝐵))))
105104imp 443 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝑁𝐿) ∈ (0...(#‘𝐵)))
106105adantr 479 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝑁𝐿) ∈ (0...(#‘𝐵)))
107 pfxccatin12lem1 40087 . . . . . . . 8 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))
108107adantl 480 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))
109108imp 443 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿)))
110 pfxfv 40063 . . . . . 6 ((𝐵 ∈ Word 𝑉 ∧ (𝑁𝐿) ∈ (0...(#‘𝐵)) ∧ (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))) → ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (𝐿𝑀))) = (𝐵‘(𝐾 − (𝐿𝑀))))
11155, 106, 109, 110syl3anc 1317 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (𝐿𝑀))) = (𝐵‘(𝐾 − (𝐿𝑀))))
1127zcnd 11311 . . . . . . . . . 10 (𝐾 ∈ (0..^(𝑁𝑀)) → 𝐾 ∈ ℂ)
113112ad2antrl 759 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐾 ∈ ℂ)
11457zcnd 11311 . . . . . . . . . . . 12 (𝑀 ∈ (0...𝐿) → 𝐿 ∈ ℂ)
115114ad2antrl 759 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝐿 ∈ ℂ)
116115adantr 479 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐿 ∈ ℂ)
117 elfzelz 12164 . . . . . . . . . . . . 13 (𝑀 ∈ (0...𝐿) → 𝑀 ∈ ℤ)
118117zcnd 11311 . . . . . . . . . . . 12 (𝑀 ∈ (0...𝐿) → 𝑀 ∈ ℂ)
119118ad2antrl 759 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝑀 ∈ ℂ)
120119adantr 479 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝑀 ∈ ℂ)
121116, 120subcld 10239 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐿𝑀) ∈ ℂ)
122113, 121subcld 10239 . . . . . . . 8 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 − (𝐿𝑀)) ∈ ℂ)
123122addid1d 10083 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐾 − (𝐿𝑀)) + 0) = (𝐾 − (𝐿𝑀)))
124123eqcomd 2611 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 − (𝐿𝑀)) = ((𝐾 − (𝐿𝑀)) + 0))
125124fveq2d 6088 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐵‘(𝐾 − (𝐿𝑀))) = (𝐵‘((𝐾 − (𝐿𝑀)) + 0)))
126111, 125eqtrd 2639 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (𝐿𝑀))) = (𝐵‘((𝐾 − (𝐿𝑀)) + 0)))
12738, 53, 1263eqtr4d 2649 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (𝐿𝑀))))
128 simpll 785 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝐴 ∈ Word 𝑉)
129 simprl 789 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝑀 ∈ (0...𝐿))
130 lencl 13121 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈ ℕ0)
131 elnn0uz 11553 . . . . . . . . . . . . . 14 ((#‘𝐴) ∈ ℕ0 ↔ (#‘𝐴) ∈ (ℤ‘0))
132 eluzfz2 12171 . . . . . . . . . . . . . 14 ((#‘𝐴) ∈ (ℤ‘0) → (#‘𝐴) ∈ (0...(#‘𝐴)))
133131, 132sylbi 205 . . . . . . . . . . . . 13 ((#‘𝐴) ∈ ℕ0 → (#‘𝐴) ∈ (0...(#‘𝐴)))
1341, 133syl5eqel 2687 . . . . . . . . . . . 12 ((#‘𝐴) ∈ ℕ0𝐿 ∈ (0...(#‘𝐴)))
135130, 134syl 17 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉𝐿 ∈ (0...(#‘𝐴)))
136135adantr 479 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐿 ∈ (0...(#‘𝐴)))
137136adantr 479 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝐿 ∈ (0...(#‘𝐴)))
138128, 129, 1373jca 1234 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(#‘𝐴))))
139138adantr 479 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(#‘𝐴))))
140 swrdlen 13217 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(#‘𝐴))) → (#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) = (𝐿𝑀))
141139, 140syl 17 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) = (𝐿𝑀))
142141eqcomd 2611 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐿𝑀) = (#‘(𝐴 substr ⟨𝑀, 𝐿⟩)))
143142oveq2d 6539 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 − (𝐿𝑀)) = (𝐾 − (#‘(𝐴 substr ⟨𝑀, 𝐿⟩))))
144143fveq2d 6088 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (𝐿𝑀))) = ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (#‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
1456, 127, 1443eqtrd 2643 . 2 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (#‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
146145ex 448 1 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐵 prefix (𝑁𝐿))‘(𝐾 − (#‘(𝐴 substr ⟨𝑀, 𝐿⟩))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1975  cop 4126   class class class wbr 4573  cfv 5786  (class class class)co 6523  cc 9786  cr 9787  0cc0 9788   + caddc 9791  cle 9927  cmin 10113  0cn0 11135  cz 11206  cuz 11515  ...cfz 12148  ..^cfzo 12285  #chash 12930  Word cword 13088   ++ cconcat 13090   substr csubstr 13092   prefix cpfx 40045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-er 7602  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-card 8621  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-nn 10864  df-n0 11136  df-z 11207  df-uz 11516  df-fz 12149  df-fzo 12286  df-hash 12931  df-word 13096  df-concat 13098  df-substr 13100  df-pfx 40046
This theorem is referenced by:  pfxccatin12  40089
  Copyright terms: Public domain W3C validator