Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfxccatpfx1 Structured version   Visualization version   GIF version

Theorem pfxccatpfx1 41752
 Description: A prefix of a concatenation being a prefix of the first concatenated word. (Contributed by AV, 10-May-2020.)
Hypothesis
Ref Expression
pfxccatin12.l 𝐿 = (#‘𝐴)
Assertion
Ref Expression
pfxccatpfx1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁))

Proof of Theorem pfxccatpfx1
StepHypRef Expression
1 3simpa 1078 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 elfznn0 12471 . . . . . 6 (𝑁 ∈ (0...𝐿) → 𝑁 ∈ ℕ0)
3 0elfz 12475 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
42, 3syl 17 . . . . 5 (𝑁 ∈ (0...𝐿) → 0 ∈ (0...𝑁))
5 pfxccatin12.l . . . . . . . 8 𝐿 = (#‘𝐴)
65oveq2i 6701 . . . . . . 7 (0...𝐿) = (0...(#‘𝐴))
76eleq2i 2722 . . . . . 6 (𝑁 ∈ (0...𝐿) ↔ 𝑁 ∈ (0...(#‘𝐴)))
87biimpi 206 . . . . 5 (𝑁 ∈ (0...𝐿) → 𝑁 ∈ (0...(#‘𝐴)))
94, 8jca 553 . . . 4 (𝑁 ∈ (0...𝐿) → (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴))))
1093ad2ant3 1104 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴))))
11 swrdccatin1 13529 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = (𝐴 substr ⟨0, 𝑁⟩)))
121, 10, 11sylc 65 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩) = (𝐴 substr ⟨0, 𝑁⟩))
13 ccatcl 13392 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
14133adant3 1101 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
1523ad2ant3 1104 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → 𝑁 ∈ ℕ0)
1614, 15jca 553 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑁 ∈ ℕ0))
17 pfxval 41708 . . 3 (((𝐴 ++ 𝐵) ∈ Word 𝑉𝑁 ∈ ℕ0) → ((𝐴 ++ 𝐵) prefix 𝑁) = ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩))
1816, 17syl 17 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = ((𝐴 ++ 𝐵) substr ⟨0, 𝑁⟩))
19 pfxval 41708 . . . 4 ((𝐴 ∈ Word 𝑉𝑁 ∈ ℕ0) → (𝐴 prefix 𝑁) = (𝐴 substr ⟨0, 𝑁⟩))
202, 19sylan2 490 . . 3 ((𝐴 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → (𝐴 prefix 𝑁) = (𝐴 substr ⟨0, 𝑁⟩))
21203adant2 1100 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → (𝐴 prefix 𝑁) = (𝐴 substr ⟨0, 𝑁⟩))
2212, 18, 213eqtr4d 2695 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ⟨cop 4216  ‘cfv 5926  (class class class)co 6690  0cc0 9974  ℕ0cn0 11330  ...cfz 12364  #chash 13157  Word cword 13323   ++ cconcat 13325   substr csubstr 13327   prefix cpfx 41706 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-substr 13335  df-pfx 41707 This theorem is referenced by:  pfxccat3a  41754  pfxccatid  41755
 Copyright terms: Public domain W3C validator