Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfxeq Structured version   Visualization version   GIF version

Theorem pfxeq 40733
 Description: The prefixes of two words are equal iff they have the same length and the same symbols at each position. Could replace swrdeq 13398. (Contributed by AV, 4-May-2020.)
Assertion
Ref Expression
pfxeq (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
Distinct variable groups:   𝑖,𝑀   𝑖,𝑁   𝑈,𝑖   𝑖,𝑉   𝑖,𝑊

Proof of Theorem pfxeq
StepHypRef Expression
1 pfxcl 40715 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝑀) ∈ Word 𝑉)
2 pfxcl 40715 . . . . 5 (𝑈 ∈ Word 𝑉 → (𝑈 prefix 𝑁) ∈ Word 𝑉)
31, 2anim12i 589 . . . 4 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → ((𝑊 prefix 𝑀) ∈ Word 𝑉 ∧ (𝑈 prefix 𝑁) ∈ Word 𝑉))
433ad2ant1 1080 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → ((𝑊 prefix 𝑀) ∈ Word 𝑉 ∧ (𝑈 prefix 𝑁) ∈ Word 𝑉))
5 eqwrd 13301 . . 3 (((𝑊 prefix 𝑀) ∈ Word 𝑉 ∧ (𝑈 prefix 𝑁) ∈ Word 𝑉) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ ((#‘(𝑊 prefix 𝑀)) = (#‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(#‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
64, 5syl 17 . 2 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ ((#‘(𝑊 prefix 𝑀)) = (#‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(#‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
7 simpl 473 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → 𝑊 ∈ Word 𝑉)
873ad2ant1 1080 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → 𝑊 ∈ Word 𝑉)
9 simpl 473 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0)
1093ad2ant2 1081 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → 𝑀 ∈ ℕ0)
11 lencl 13279 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (#‘𝑊) ∈ ℕ0)
1211adantr 481 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → (#‘𝑊) ∈ ℕ0)
13123ad2ant1 1080 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (#‘𝑊) ∈ ℕ0)
14 simpl 473 . . . . . . 7 ((𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)) → 𝑀 ≤ (#‘𝑊))
15143ad2ant3 1082 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → 𝑀 ≤ (#‘𝑊))
16 elfz2nn0 12388 . . . . . 6 (𝑀 ∈ (0...(#‘𝑊)) ↔ (𝑀 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ0𝑀 ≤ (#‘𝑊)))
1710, 13, 15, 16syl3anbrc 1244 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → 𝑀 ∈ (0...(#‘𝑊)))
18 pfxlen 40720 . . . . 5 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(#‘𝑊))) → (#‘(𝑊 prefix 𝑀)) = 𝑀)
198, 17, 18syl2anc 692 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (#‘(𝑊 prefix 𝑀)) = 𝑀)
20 simpr 477 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → 𝑈 ∈ Word 𝑉)
21203ad2ant1 1080 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → 𝑈 ∈ Word 𝑉)
22 simpr 477 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
23223ad2ant2 1081 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → 𝑁 ∈ ℕ0)
24 lencl 13279 . . . . . . . 8 (𝑈 ∈ Word 𝑉 → (#‘𝑈) ∈ ℕ0)
2524adantl 482 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → (#‘𝑈) ∈ ℕ0)
26253ad2ant1 1080 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (#‘𝑈) ∈ ℕ0)
27 simpr 477 . . . . . . 7 ((𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈)) → 𝑁 ≤ (#‘𝑈))
28273ad2ant3 1082 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → 𝑁 ≤ (#‘𝑈))
29 elfz2nn0 12388 . . . . . 6 (𝑁 ∈ (0...(#‘𝑈)) ↔ (𝑁 ∈ ℕ0 ∧ (#‘𝑈) ∈ ℕ0𝑁 ≤ (#‘𝑈)))
3023, 26, 28, 29syl3anbrc 1244 . . . . 5 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → 𝑁 ∈ (0...(#‘𝑈)))
31 pfxlen 40720 . . . . 5 ((𝑈 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑈))) → (#‘(𝑈 prefix 𝑁)) = 𝑁)
3221, 30, 31syl2anc 692 . . . 4 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (#‘(𝑈 prefix 𝑁)) = 𝑁)
3319, 32eqeq12d 2636 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → ((#‘(𝑊 prefix 𝑀)) = (#‘(𝑈 prefix 𝑁)) ↔ 𝑀 = 𝑁))
3433anbi1d 740 . 2 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → (((#‘(𝑊 prefix 𝑀)) = (#‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(#‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^(#‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
358adantr 481 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 = 𝑁) → 𝑊 ∈ Word 𝑉)
3617adantr 481 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 = 𝑁) → 𝑀 ∈ (0...(#‘𝑊)))
3735, 36, 18syl2anc 692 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 = 𝑁) → (#‘(𝑊 prefix 𝑀)) = 𝑀)
3837oveq2d 6631 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 = 𝑁) → (0..^(#‘(𝑊 prefix 𝑀))) = (0..^𝑀))
3938raleqdv 3137 . . . 4 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 = 𝑁) → (∀𝑖 ∈ (0..^(#‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ ∀𝑖 ∈ (0..^𝑀)((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖)))
4035adantr 481 . . . . . . 7 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ Word 𝑉)
4136adantr 481 . . . . . . 7 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ (0...(#‘𝑊)))
42 simpr 477 . . . . . . 7 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
43 pfxfv 40728 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(#‘𝑊)) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊 prefix 𝑀)‘𝑖) = (𝑊𝑖))
4440, 41, 42, 43syl3anc 1323 . . . . . 6 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊 prefix 𝑀)‘𝑖) = (𝑊𝑖))
4521ad2antrr 761 . . . . . . 7 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ Word 𝑉)
4630ad2antrr 761 . . . . . . 7 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑁 ∈ (0...(#‘𝑈)))
47 oveq2 6623 . . . . . . . . . 10 (𝑀 = 𝑁 → (0..^𝑀) = (0..^𝑁))
4847eleq2d 2684 . . . . . . . . 9 (𝑀 = 𝑁 → (𝑖 ∈ (0..^𝑀) ↔ 𝑖 ∈ (0..^𝑁)))
4948adantl 482 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 = 𝑁) → (𝑖 ∈ (0..^𝑀) ↔ 𝑖 ∈ (0..^𝑁)))
5049biimpa 501 . . . . . . 7 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑁))
51 pfxfv 40728 . . . . . . 7 ((𝑈 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑈)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑈 prefix 𝑁)‘𝑖) = (𝑈𝑖))
5245, 46, 50, 51syl3anc 1323 . . . . . 6 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑈 prefix 𝑁)‘𝑖) = (𝑈𝑖))
5344, 52eqeq12d 2636 . . . . 5 (((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ (𝑊𝑖) = (𝑈𝑖)))
5453ralbidva 2981 . . . 4 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 = 𝑁) → (∀𝑖 ∈ (0..^𝑀)((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖)))
5539, 54bitrd 268 . . 3 ((((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) ∧ 𝑀 = 𝑁) → (∀𝑖 ∈ (0..^(#‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖)))
5655pm5.32da 672 . 2 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → ((𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^(#‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
576, 34, 563bitrd 294 1 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (#‘𝑊) ∧ 𝑁 ≤ (#‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2908   class class class wbr 4623  ‘cfv 5857  (class class class)co 6615  0cc0 9896   ≤ cle 10035  ℕ0cn0 11252  ...cfz 12284  ..^cfzo 12422  #chash 13073  Word cword 13246   prefix cpfx 40710 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-fzo 12423  df-hash 13074  df-word 13254  df-substr 13258  df-pfx 40711 This theorem is referenced by:  pfxsuffeqwrdeq  40735
 Copyright terms: Public domain W3C validator