MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem3a Structured version   Visualization version   GIF version

Theorem pgpfac1lem3a 18456
Description: Lemma for pgpfac1 18460. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.w (𝜑𝑊 ∈ (SubGrp‘𝐺))
pgpfac1.i (𝜑 → (𝑆𝑊) = { 0 })
pgpfac1.ss (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
pgpfac1.2 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
pgpfac1.c (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
pgpfac1.mg · = (.g𝐺)
pgpfac1.m (𝜑𝑀 ∈ ℤ)
pgpfac1.mw (𝜑 → ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)) ∈ 𝑊)
Assertion
Ref Expression
pgpfac1lem3a (𝜑 → (𝑃𝐸𝑃𝑀))
Distinct variable groups:   𝑤,𝐴   𝑤,   𝑤,𝑃   𝑤,𝐺   𝑤,𝑈   𝑤,𝐶   𝑤,𝑆   𝑤,𝑊   𝜑,𝑤   𝑤, ·   𝑤,𝐾
Allowed substitution hints:   𝐵(𝑤)   𝐸(𝑤)   𝑀(𝑤)   𝑂(𝑤)   0 (𝑤)

Proof of Theorem pgpfac1lem3a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 pgpfac1.c . . . 4 (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
21eldifbd 3580 . . 3 (𝜑 → ¬ 𝐶 ∈ (𝑆 𝑊))
3 pgpfac1.p . . . . . . . 8 (𝜑𝑃 pGrp 𝐺)
4 pgpprm 17989 . . . . . . . 8 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
53, 4syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
6 pgpfac1.g . . . . . . . . 9 (𝜑𝐺 ∈ Abel)
7 ablgrp 18179 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
86, 7syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
9 pgpfac1.n . . . . . . . 8 (𝜑𝐵 ∈ Fin)
10 pgpfac1.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
11 pgpfac1.e . . . . . . . . 9 𝐸 = (gEx‘𝐺)
1210, 11gexcl2 17985 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∈ ℕ)
138, 9, 12syl2anc 692 . . . . . . 7 (𝜑𝐸 ∈ ℕ)
14 pceq0 15556 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) → ((𝑃 pCnt 𝐸) = 0 ↔ ¬ 𝑃𝐸))
155, 13, 14syl2anc 692 . . . . . 6 (𝜑 → ((𝑃 pCnt 𝐸) = 0 ↔ ¬ 𝑃𝐸))
16 oveq2 6643 . . . . . 6 ((𝑃 pCnt 𝐸) = 0 → (𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0))
1715, 16syl6bir 244 . . . . 5 (𝜑 → (¬ 𝑃𝐸 → (𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0)))
1810grpbn0 17432 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
198, 18syl 17 . . . . . . . . . . . 12 (𝜑𝐵 ≠ ∅)
20 hashnncl 13140 . . . . . . . . . . . . 13 (𝐵 ∈ Fin → ((#‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
219, 20syl 17 . . . . . . . . . . . 12 (𝜑 → ((#‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
2219, 21mpbird 247 . . . . . . . . . . 11 (𝜑 → (#‘𝐵) ∈ ℕ)
235, 22pccld 15536 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (#‘𝐵)) ∈ ℕ0)
2410, 11gexdvds3 17986 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∥ (#‘𝐵))
258, 9, 24syl2anc 692 . . . . . . . . . . 11 (𝜑𝐸 ∥ (#‘𝐵))
2610pgphash 18003 . . . . . . . . . . . 12 ((𝑃 pGrp 𝐺𝐵 ∈ Fin) → (#‘𝐵) = (𝑃↑(𝑃 pCnt (#‘𝐵))))
273, 9, 26syl2anc 692 . . . . . . . . . . 11 (𝜑 → (#‘𝐵) = (𝑃↑(𝑃 pCnt (#‘𝐵))))
2825, 27breqtrd 4670 . . . . . . . . . 10 (𝜑𝐸 ∥ (𝑃↑(𝑃 pCnt (#‘𝐵))))
29 oveq2 6643 . . . . . . . . . . . 12 (𝑘 = (𝑃 pCnt (#‘𝐵)) → (𝑃𝑘) = (𝑃↑(𝑃 pCnt (#‘𝐵))))
3029breq2d 4656 . . . . . . . . . . 11 (𝑘 = (𝑃 pCnt (#‘𝐵)) → (𝐸 ∥ (𝑃𝑘) ↔ 𝐸 ∥ (𝑃↑(𝑃 pCnt (#‘𝐵)))))
3130rspcev 3304 . . . . . . . . . 10 (((𝑃 pCnt (#‘𝐵)) ∈ ℕ0𝐸 ∥ (𝑃↑(𝑃 pCnt (#‘𝐵)))) → ∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃𝑘))
3223, 28, 31syl2anc 692 . . . . . . . . 9 (𝜑 → ∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃𝑘))
33 pcprmpw2 15567 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) → (∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃𝑘) ↔ 𝐸 = (𝑃↑(𝑃 pCnt 𝐸))))
345, 13, 33syl2anc 692 . . . . . . . . 9 (𝜑 → (∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃𝑘) ↔ 𝐸 = (𝑃↑(𝑃 pCnt 𝐸))))
3532, 34mpbid 222 . . . . . . . 8 (𝜑𝐸 = (𝑃↑(𝑃 pCnt 𝐸)))
3635eqcomd 2626 . . . . . . 7 (𝜑 → (𝑃↑(𝑃 pCnt 𝐸)) = 𝐸)
37 prmnn 15369 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
385, 37syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
3938nncnd 11021 . . . . . . . 8 (𝜑𝑃 ∈ ℂ)
4039exp0d 12985 . . . . . . 7 (𝜑 → (𝑃↑0) = 1)
4136, 40eqeq12d 2635 . . . . . 6 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0) ↔ 𝐸 = 1))
42 grpmnd 17410 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
438, 42syl 17 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
4410, 11gex1 17987 . . . . . . 7 (𝐺 ∈ Mnd → (𝐸 = 1 ↔ 𝐵 ≈ 1𝑜))
4543, 44syl 17 . . . . . 6 (𝜑 → (𝐸 = 1 ↔ 𝐵 ≈ 1𝑜))
4641, 45bitrd 268 . . . . 5 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0) ↔ 𝐵 ≈ 1𝑜))
4717, 46sylibd 229 . . . 4 (𝜑 → (¬ 𝑃𝐸𝐵 ≈ 1𝑜))
48 pgpfac1.s . . . . . . . . . . 11 𝑆 = (𝐾‘{𝐴})
4910subgacs 17610 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
508, 49syl 17 . . . . . . . . . . . . 13 (𝜑 → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
5150acsmred 16298 . . . . . . . . . . . 12 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
52 pgpfac1.u . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ (SubGrp‘𝐺))
5310subgss 17576 . . . . . . . . . . . . . 14 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
5452, 53syl 17 . . . . . . . . . . . . 13 (𝜑𝑈𝐵)
55 pgpfac1.au . . . . . . . . . . . . 13 (𝜑𝐴𝑈)
5654, 55sseldd 3596 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
57 pgpfac1.k . . . . . . . . . . . . 13 𝐾 = (mrCls‘(SubGrp‘𝐺))
5857mrcsncl 16253 . . . . . . . . . . . 12 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
5951, 56, 58syl2anc 692 . . . . . . . . . . 11 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
6048, 59syl5eqel 2703 . . . . . . . . . 10 (𝜑𝑆 ∈ (SubGrp‘𝐺))
61 pgpfac1.w . . . . . . . . . 10 (𝜑𝑊 ∈ (SubGrp‘𝐺))
62 pgpfac1.l . . . . . . . . . . 11 = (LSSum‘𝐺)
6362lsmsubg2 18243 . . . . . . . . . 10 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
646, 60, 61, 63syl3anc 1324 . . . . . . . . 9 (𝜑 → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
65 pgpfac1.z . . . . . . . . . 10 0 = (0g𝐺)
6665subg0cl 17583 . . . . . . . . 9 ((𝑆 𝑊) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆 𝑊))
6764, 66syl 17 . . . . . . . 8 (𝜑0 ∈ (𝑆 𝑊))
6867snssd 4331 . . . . . . 7 (𝜑 → { 0 } ⊆ (𝑆 𝑊))
6968adantr 481 . . . . . 6 ((𝜑𝐵 ≈ 1𝑜) → { 0 } ⊆ (𝑆 𝑊))
701eldifad 3579 . . . . . . . . 9 (𝜑𝐶𝑈)
7154, 70sseldd 3596 . . . . . . . 8 (𝜑𝐶𝐵)
7271adantr 481 . . . . . . 7 ((𝜑𝐵 ≈ 1𝑜) → 𝐶𝐵)
7310, 65grpidcl 17431 . . . . . . . . 9 (𝐺 ∈ Grp → 0𝐵)
748, 73syl 17 . . . . . . . 8 (𝜑0𝐵)
75 en1eqsn 8175 . . . . . . . 8 (( 0𝐵𝐵 ≈ 1𝑜) → 𝐵 = { 0 })
7674, 75sylan 488 . . . . . . 7 ((𝜑𝐵 ≈ 1𝑜) → 𝐵 = { 0 })
7772, 76eleqtrd 2701 . . . . . 6 ((𝜑𝐵 ≈ 1𝑜) → 𝐶 ∈ { 0 })
7869, 77sseldd 3596 . . . . 5 ((𝜑𝐵 ≈ 1𝑜) → 𝐶 ∈ (𝑆 𝑊))
7978ex 450 . . . 4 (𝜑 → (𝐵 ≈ 1𝑜𝐶 ∈ (𝑆 𝑊)))
8047, 79syld 47 . . 3 (𝜑 → (¬ 𝑃𝐸𝐶 ∈ (𝑆 𝑊)))
812, 80mt3d 140 . 2 (𝜑𝑃𝐸)
82 pgpfac1.oe . . . . 5 (𝜑 → (𝑂𝐴) = 𝐸)
8313nncnd 11021 . . . . . 6 (𝜑𝐸 ∈ ℂ)
8438nnne0d 11050 . . . . . 6 (𝜑𝑃 ≠ 0)
8583, 39, 84divcan1d 10787 . . . . 5 (𝜑 → ((𝐸 / 𝑃) · 𝑃) = 𝐸)
8682, 85eqtr4d 2657 . . . 4 (𝜑 → (𝑂𝐴) = ((𝐸 / 𝑃) · 𝑃))
87 nndivdvds 14970 . . . . . . . . . . . . 13 ((𝐸 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑃𝐸 ↔ (𝐸 / 𝑃) ∈ ℕ))
8813, 38, 87syl2anc 692 . . . . . . . . . . . 12 (𝜑 → (𝑃𝐸 ↔ (𝐸 / 𝑃) ∈ ℕ))
8981, 88mpbid 222 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑃) ∈ ℕ)
9089nnzd 11466 . . . . . . . . . 10 (𝜑 → (𝐸 / 𝑃) ∈ ℤ)
91 pgpfac1.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
9290, 91zmulcld 11473 . . . . . . . . 9 (𝜑 → ((𝐸 / 𝑃) · 𝑀) ∈ ℤ)
9356snssd 4331 . . . . . . . . . . . 12 (𝜑 → {𝐴} ⊆ 𝐵)
9451, 57, 93mrcssidd 16266 . . . . . . . . . . 11 (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴}))
9594, 48syl6sseqr 3644 . . . . . . . . . 10 (𝜑 → {𝐴} ⊆ 𝑆)
96 snssg 4318 . . . . . . . . . . 11 (𝐴𝑈 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
9755, 96syl 17 . . . . . . . . . 10 (𝜑 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
9895, 97mpbird 247 . . . . . . . . 9 (𝜑𝐴𝑆)
99 pgpfac1.mg . . . . . . . . . 10 · = (.g𝐺)
10099subgmulgcl 17588 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ((𝐸 / 𝑃) · 𝑀) ∈ ℤ ∧ 𝐴𝑆) → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑆)
10160, 92, 98, 100syl3anc 1324 . . . . . . . 8 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑆)
102 prmz 15370 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1035, 102syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℤ)
10410, 99mulgcl 17540 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℤ ∧ 𝐶𝐵) → (𝑃 · 𝐶) ∈ 𝐵)
1058, 103, 71, 104syl3anc 1324 . . . . . . . . . . 11 (𝜑 → (𝑃 · 𝐶) ∈ 𝐵)
10610, 99mulgcl 17540 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝐴𝐵) → (𝑀 · 𝐴) ∈ 𝐵)
1078, 91, 56, 106syl3anc 1324 . . . . . . . . . . 11 (𝜑 → (𝑀 · 𝐴) ∈ 𝐵)
108 eqid 2620 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
10910, 99, 108mulgdi 18213 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ (𝑃 · 𝐶) ∈ 𝐵 ∧ (𝑀 · 𝐴) ∈ 𝐵)) → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴))))
1106, 90, 105, 107, 109syl13anc 1326 . . . . . . . . . 10 (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴))))
11185oveq1d 6650 . . . . . . . . . . . 12 (𝜑 → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = (𝐸 · 𝐶))
11210, 99mulgass 17560 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝐶𝐵)) → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = ((𝐸 / 𝑃) · (𝑃 · 𝐶)))
1138, 90, 103, 71, 112syl13anc 1326 . . . . . . . . . . . 12 (𝜑 → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = ((𝐸 / 𝑃) · (𝑃 · 𝐶)))
11410, 11, 99, 65gexid 17977 . . . . . . . . . . . . 13 (𝐶𝐵 → (𝐸 · 𝐶) = 0 )
11571, 114syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐸 · 𝐶) = 0 )
116111, 113, 1153eqtr3rd 2663 . . . . . . . . . . 11 (𝜑0 = ((𝐸 / 𝑃) · (𝑃 · 𝐶)))
11710, 99mulgass 17560 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐴𝐵)) → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = ((𝐸 / 𝑃) · (𝑀 · 𝐴)))
1188, 90, 91, 56, 117syl13anc 1326 . . . . . . . . . . 11 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = ((𝐸 / 𝑃) · (𝑀 · 𝐴)))
119116, 118oveq12d 6653 . . . . . . . . . 10 (𝜑 → ( 0 (+g𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴))))
12010subgss 17576 . . . . . . . . . . . . 13 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
12160, 120syl 17 . . . . . . . . . . . 12 (𝜑𝑆𝐵)
122121, 101sseldd 3596 . . . . . . . . . . 11 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝐵)
12310, 108, 65grplid 17433 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝐵) → ( 0 (+g𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · 𝑀) · 𝐴))
1248, 122, 123syl2anc 692 . . . . . . . . . 10 (𝜑 → ( 0 (+g𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · 𝑀) · 𝐴))
125110, 119, 1243eqtr2d 2660 . . . . . . . . 9 (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · 𝑀) · 𝐴))
126 pgpfac1.mw . . . . . . . . . 10 (𝜑 → ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)) ∈ 𝑊)
12799subgmulgcl 17588 . . . . . . . . . 10 ((𝑊 ∈ (SubGrp‘𝐺) ∧ (𝐸 / 𝑃) ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)) ∈ 𝑊) → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) ∈ 𝑊)
12861, 90, 126, 127syl3anc 1324 . . . . . . . . 9 (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) ∈ 𝑊)
129125, 128eqeltrrd 2700 . . . . . . . 8 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑊)
130101, 129elind 3790 . . . . . . 7 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ (𝑆𝑊))
131 pgpfac1.i . . . . . . 7 (𝜑 → (𝑆𝑊) = { 0 })
132130, 131eleqtrd 2701 . . . . . 6 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ { 0 })
133 elsni 4185 . . . . . 6 ((((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ { 0 } → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 )
134132, 133syl 17 . . . . 5 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 )
135 pgpfac1.o . . . . . . 7 𝑂 = (od‘𝐺)
13610, 135, 99, 65oddvds 17947 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝐵 ∧ ((𝐸 / 𝑃) · 𝑀) ∈ ℤ) → ((𝑂𝐴) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 ))
1378, 56, 92, 136syl3anc 1324 . . . . 5 (𝜑 → ((𝑂𝐴) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 ))
138134, 137mpbird 247 . . . 4 (𝜑 → (𝑂𝐴) ∥ ((𝐸 / 𝑃) · 𝑀))
13986, 138eqbrtrrd 4668 . . 3 (𝜑 → ((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀))
14089nnne0d 11050 . . . 4 (𝜑 → (𝐸 / 𝑃) ≠ 0)
141 dvdscmulr 14991 . . . 4 ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ (𝐸 / 𝑃) ≠ 0)) → (((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ 𝑃𝑀))
142103, 91, 90, 140, 141syl112anc 1328 . . 3 (𝜑 → (((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ 𝑃𝑀))
143139, 142mpbid 222 . 2 (𝜑𝑃𝑀)
14481, 143jca 554 1 (𝜑 → (𝑃𝐸𝑃𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  wne 2791  wral 2909  wrex 2910  cdif 3564  cin 3566  wss 3567  wpss 3568  c0 3907  {csn 4168   class class class wbr 4644  cfv 5876  (class class class)co 6635  1𝑜c1o 7538  cen 7937  Fincfn 7940  0cc0 9921  1c1 9922   · cmul 9926   / cdiv 10669  cn 11005  0cn0 11277  cz 11362  cexp 12843  #chash 13100  cdvds 14964  cprime 15366   pCnt cpc 15522  Basecbs 15838  +gcplusg 15922  0gc0g 16081  Moorecmre 16223  mrClscmrc 16224  ACScacs 16226  Mndcmnd 17275  Grpcgrp 17403  .gcmg 17521  SubGrpcsubg 17569  odcod 17925  gExcgex 17926   pGrp cpgp 17927  LSSumclsm 18030  Abelcabl 18175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-disj 4612  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-omul 7550  df-er 7727  df-ec 7729  df-qs 7733  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-acn 8753  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-xnn0 11349  df-z 11363  df-uz 11673  df-q 11774  df-rp 11818  df-fz 12312  df-fzo 12450  df-fl 12576  df-mod 12652  df-seq 12785  df-exp 12844  df-fac 13044  df-bc 13073  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-sum 14398  df-dvds 14965  df-gcd 15198  df-prm 15367  df-pc 15523  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-0g 16083  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-grp 17406  df-minusg 17407  df-sbg 17408  df-mulg 17522  df-subg 17572  df-eqg 17574  df-ga 17704  df-cntz 17731  df-od 17929  df-gex 17930  df-pgp 17931  df-lsm 18032  df-cmn 18176  df-abl 18177
This theorem is referenced by:  pgpfac1lem3  18457
  Copyright terms: Public domain W3C validator