MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfi Structured version   Visualization version   GIF version

Theorem pgpfi 17941
Description: The converse to pgpfi1 17931. A finite group is a 𝑃-group iff it has size some power of 𝑃. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
pgpfi.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
pgpfi ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (#‘𝑋) = (𝑃𝑛))))
Distinct variable groups:   𝑛,𝐺   𝑃,𝑛   𝑛,𝑋

Proof of Theorem pgpfi
Dummy variables 𝑔 𝑚 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfi.1 . . . 4 𝑋 = (Base‘𝐺)
2 eqid 2621 . . . 4 (od‘𝐺) = (od‘𝐺)
31, 2ispgp 17928 . . 3 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚)))
4 simprl 793 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → 𝑃 ∈ ℙ)
51grpbn0 17372 . . . . . . . . . . 11 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
65ad2antrr 761 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → 𝑋 ≠ ∅)
7 hashnncl 13097 . . . . . . . . . . 11 (𝑋 ∈ Fin → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
87ad2antlr 762 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
96, 8mpbird 247 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (#‘𝑋) ∈ ℕ)
104, 9pccld 15479 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (#‘𝑋)) ∈ ℕ0)
1110nn0red 11296 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (#‘𝑋)) ∈ ℝ)
1211leidd 10538 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (#‘𝑋)) ≤ (𝑃 pCnt (#‘𝑋)))
1310nn0zd 11424 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (#‘𝑋)) ∈ ℤ)
14 pcid 15501 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ (𝑃 pCnt (#‘𝑋)) ∈ ℤ) → (𝑃 pCnt (𝑃↑(𝑃 pCnt (#‘𝑋)))) = (𝑃 pCnt (#‘𝑋)))
154, 13, 14syl2anc 692 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (𝑃↑(𝑃 pCnt (#‘𝑋)))) = (𝑃 pCnt (#‘𝑋)))
1612, 15breqtrrd 4641 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 pCnt (#‘𝑋)) ≤ (𝑃 pCnt (𝑃↑(𝑃 pCnt (#‘𝑋)))))
1716ad2antrr 761 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑃 pCnt (#‘𝑋)) ≤ (𝑃 pCnt (𝑃↑(𝑃 pCnt (#‘𝑋)))))
18 simpr 477 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃)
1918oveq1d 6619 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt (#‘𝑋)) = (𝑃 pCnt (#‘𝑋)))
2018oveq1d 6619 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt (𝑃↑(𝑃 pCnt (#‘𝑋)))) = (𝑃 pCnt (𝑃↑(𝑃 pCnt (#‘𝑋)))))
2117, 19, 203brtr4d 4645 . . . . . . . . . . 11 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt (#‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (#‘𝑋)))))
22 simp-4l 805 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) → 𝐺 ∈ Grp)
23 simplr 791 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → 𝑋 ∈ Fin)
2423ad2antrr 761 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) → 𝑋 ∈ Fin)
25 simplr 791 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) → 𝑝 ∈ ℙ)
26 simpr 477 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) → 𝑝 ∥ (#‘𝑋))
271, 2odcau 17940 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) → ∃𝑔𝑋 ((od‘𝐺)‘𝑔) = 𝑝)
2822, 24, 25, 26, 27syl31anc 1326 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) → ∃𝑔𝑋 ((od‘𝐺)‘𝑔) = 𝑝)
2925adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝 ∈ ℙ)
30 prmz 15313 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
31 iddvds 14919 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ ℤ → 𝑝𝑝)
3229, 30, 313syl 18 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝𝑝)
33 simprr 795 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → ((od‘𝐺)‘𝑔) = 𝑝)
3432, 33breqtrrd 4641 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝 ∥ ((od‘𝐺)‘𝑔))
35 simplrr 800 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) → ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))
36 fveq2 6148 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑔 → ((od‘𝐺)‘𝑥) = ((od‘𝐺)‘𝑔))
3736eqeq1d 2623 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑔 → (((od‘𝐺)‘𝑥) = (𝑃𝑚) ↔ ((od‘𝐺)‘𝑔) = (𝑃𝑚)))
3837rexbidv 3045 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑔 → (∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚) ↔ ∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚)))
3938rspccva 3294 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚) ∧ 𝑔𝑋) → ∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚))
4035, 39sylan 488 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑔𝑋) → ∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚))
4140ad2ant2r 782 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → ∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚))
424ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑃 ∈ ℙ)
43 prmnn 15312 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
4429, 43syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝 ∈ ℕ)
4533, 44eqeltrd 2698 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → ((od‘𝐺)‘𝑔) ∈ ℕ)
46 pcprmpw 15511 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑔) ∈ ℕ) → (∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚) ↔ ((od‘𝐺)‘𝑔) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔)))))
4742, 45, 46syl2anc 692 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → (∃𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑔) = (𝑃𝑚) ↔ ((od‘𝐺)‘𝑔) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔)))))
4841, 47mpbid 222 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → ((od‘𝐺)‘𝑔) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔))))
4934, 48breqtrd 4639 . . . . . . . . . . . . . . . . . 18 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝 ∥ (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔))))
5042, 45pccld 15479 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → (𝑃 pCnt ((od‘𝐺)‘𝑔)) ∈ ℕ0)
51 prmdvdsexpr 15353 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ (𝑃 pCnt ((od‘𝐺)‘𝑔)) ∈ ℕ0) → (𝑝 ∥ (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔))) → 𝑝 = 𝑃))
5229, 42, 50, 51syl3anc 1323 . . . . . . . . . . . . . . . . . 18 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → (𝑝 ∥ (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑔))) → 𝑝 = 𝑃))
5349, 52mpd 15 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) ∧ (𝑔𝑋 ∧ ((od‘𝐺)‘𝑔) = 𝑝)) → 𝑝 = 𝑃)
5428, 53rexlimddv 3028 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 ∥ (#‘𝑋)) → 𝑝 = 𝑃)
5554ex 450 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (#‘𝑋) → 𝑝 = 𝑃))
5655necon3ad 2803 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) → (𝑝𝑃 → ¬ 𝑝 ∥ (#‘𝑋)))
5756imp 445 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → ¬ 𝑝 ∥ (#‘𝑋))
58 simplr 791 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 𝑝 ∈ ℙ)
599ad2antrr 761 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (#‘𝑋) ∈ ℕ)
60 pceq0 15499 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ (#‘𝑋) ∈ ℕ) → ((𝑝 pCnt (#‘𝑋)) = 0 ↔ ¬ 𝑝 ∥ (#‘𝑋)))
6158, 59, 60syl2anc 692 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → ((𝑝 pCnt (#‘𝑋)) = 0 ↔ ¬ 𝑝 ∥ (#‘𝑋)))
6257, 61mpbird 247 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt (#‘𝑋)) = 0)
63 prmnn 15312 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
6463ad2antrl 763 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → 𝑃 ∈ ℕ)
6564, 10nnexpcld 12970 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃↑(𝑃 pCnt (#‘𝑋))) ∈ ℕ)
6665ad2antrr 761 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑃↑(𝑃 pCnt (#‘𝑋))) ∈ ℕ)
6758, 66pccld 15479 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt (𝑃↑(𝑃 pCnt (#‘𝑋)))) ∈ ℕ0)
6867nn0ge0d 11298 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 0 ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (#‘𝑋)))))
6962, 68eqbrtrd 4635 . . . . . . . . . . 11 (((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt (#‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (#‘𝑋)))))
7021, 69pm2.61dane 2877 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (#‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (#‘𝑋)))))
7170ralrimiva 2960 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → ∀𝑝 ∈ ℙ (𝑝 pCnt (#‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (#‘𝑋)))))
72 hashcl 13087 . . . . . . . . . . . 12 (𝑋 ∈ Fin → (#‘𝑋) ∈ ℕ0)
7372ad2antlr 762 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (#‘𝑋) ∈ ℕ0)
7473nn0zd 11424 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (#‘𝑋) ∈ ℤ)
7565nnzd 11425 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃↑(𝑃 pCnt (#‘𝑋))) ∈ ℤ)
76 pc2dvds 15507 . . . . . . . . . 10 (((#‘𝑋) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt (#‘𝑋))) ∈ ℤ) → ((#‘𝑋) ∥ (𝑃↑(𝑃 pCnt (#‘𝑋))) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (#‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (#‘𝑋))))))
7774, 75, 76syl2anc 692 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → ((#‘𝑋) ∥ (𝑃↑(𝑃 pCnt (#‘𝑋))) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (#‘𝑋)) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt (#‘𝑋))))))
7871, 77mpbird 247 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (#‘𝑋) ∥ (𝑃↑(𝑃 pCnt (#‘𝑋))))
79 oveq2 6612 . . . . . . . . . 10 (𝑛 = (𝑃 pCnt (#‘𝑋)) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt (#‘𝑋))))
8079breq2d 4625 . . . . . . . . 9 (𝑛 = (𝑃 pCnt (#‘𝑋)) → ((#‘𝑋) ∥ (𝑃𝑛) ↔ (#‘𝑋) ∥ (𝑃↑(𝑃 pCnt (#‘𝑋)))))
8180rspcev 3295 . . . . . . . 8 (((𝑃 pCnt (#‘𝑋)) ∈ ℕ0 ∧ (#‘𝑋) ∥ (𝑃↑(𝑃 pCnt (#‘𝑋)))) → ∃𝑛 ∈ ℕ0 (#‘𝑋) ∥ (𝑃𝑛))
8210, 78, 81syl2anc 692 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → ∃𝑛 ∈ ℕ0 (#‘𝑋) ∥ (𝑃𝑛))
83 pcprmpw2 15510 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (#‘𝑋) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (#‘𝑋) ∥ (𝑃𝑛) ↔ (#‘𝑋) = (𝑃↑(𝑃 pCnt (#‘𝑋)))))
84 pcprmpw 15511 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (#‘𝑋) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (#‘𝑋) = (𝑃𝑛) ↔ (#‘𝑋) = (𝑃↑(𝑃 pCnt (#‘𝑋)))))
8583, 84bitr4d 271 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (#‘𝑋) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (#‘𝑋) ∥ (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 (#‘𝑋) = (𝑃𝑛)))
864, 9, 85syl2anc 692 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (∃𝑛 ∈ ℕ0 (#‘𝑋) ∥ (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 (#‘𝑋) = (𝑃𝑛)))
8782, 86mpbid 222 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → ∃𝑛 ∈ ℕ0 (#‘𝑋) = (𝑃𝑛))
884, 87jca 554 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (#‘𝑋) = (𝑃𝑛)))
89883adantr2 1219 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚))) → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (#‘𝑋) = (𝑃𝑛)))
9089ex 450 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → ((𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑚 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑚)) → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (#‘𝑋) = (𝑃𝑛))))
913, 90syl5bi 232 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (#‘𝑋) = (𝑃𝑛))))
921pgpfi1 17931 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → ((#‘𝑋) = (𝑃𝑛) → 𝑃 pGrp 𝐺))
93923expia 1264 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (𝑛 ∈ ℕ0 → ((#‘𝑋) = (𝑃𝑛) → 𝑃 pGrp 𝐺)))
9493rexlimdv 3023 . . . 4 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (∃𝑛 ∈ ℕ0 (#‘𝑋) = (𝑃𝑛) → 𝑃 pGrp 𝐺))
9594expimpd 628 . . 3 (𝐺 ∈ Grp → ((𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (#‘𝑋) = (𝑃𝑛)) → 𝑃 pGrp 𝐺))
9695adantr 481 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → ((𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (#‘𝑋) = (𝑃𝑛)) → 𝑃 pGrp 𝐺))
9791, 96impbid 202 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (#‘𝑋) = (𝑃𝑛))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  c0 3891   class class class wbr 4613  cfv 5847  (class class class)co 6604  Fincfn 7899  0cc0 9880  cle 10019  cn 10964  0cn0 11236  cz 11321  cexp 12800  #chash 13057  cdvds 14907  cprime 15309   pCnt cpc 15465  Basecbs 15781  Grpcgrp 17343  odcod 17865   pGrp cpgp 17867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-disj 4584  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-omul 7510  df-er 7687  df-ec 7689  df-qs 7693  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-acn 8712  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-dvds 14908  df-gcd 15141  df-prm 15310  df-pc 15466  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-eqg 17514  df-ga 17644  df-od 17869  df-pgp 17871
This theorem is referenced by:  pgpfi2  17942  sylow2alem2  17954  slwhash  17960  fislw  17961
  Copyright terms: Public domain W3C validator