MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfi1 Structured version   Visualization version   GIF version

Theorem pgpfi1 18712
Description: A finite group with order a power of a prime 𝑃 is a 𝑃-group. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
pgpfi1.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
pgpfi1 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑋) = (𝑃𝑁) → 𝑃 pGrp 𝐺))

Proof of Theorem pgpfi1
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1187 . . 3 (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) → 𝑃 ∈ ℙ)
2 simpl1 1186 . . 3 (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) → 𝐺 ∈ Grp)
3 simpll3 1209 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → 𝑁 ∈ ℕ0)
42adantr 483 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → 𝐺 ∈ Grp)
5 simplr 767 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → (♯‘𝑋) = (𝑃𝑁))
61adantr 483 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → 𝑃 ∈ ℙ)
7 prmnn 16010 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
86, 7syl 17 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → 𝑃 ∈ ℕ)
98, 3nnexpcld 13598 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → (𝑃𝑁) ∈ ℕ)
109nnnn0d 11947 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → (𝑃𝑁) ∈ ℕ0)
115, 10eqeltrd 2911 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → (♯‘𝑋) ∈ ℕ0)
12 pgpfi1.1 . . . . . . . . . . 11 𝑋 = (Base‘𝐺)
1312fvexi 6677 . . . . . . . . . 10 𝑋 ∈ V
14 hashclb 13711 . . . . . . . . . 10 (𝑋 ∈ V → (𝑋 ∈ Fin ↔ (♯‘𝑋) ∈ ℕ0))
1513, 14ax-mp 5 . . . . . . . . 9 (𝑋 ∈ Fin ↔ (♯‘𝑋) ∈ ℕ0)
1611, 15sylibr 236 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → 𝑋 ∈ Fin)
17 simpr 487 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → 𝑥𝑋)
18 eqid 2819 . . . . . . . . 9 (od‘𝐺) = (od‘𝐺)
1912, 18oddvds2 18685 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥𝑋) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝑋))
204, 16, 17, 19syl3anc 1366 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝑋))
2120, 5breqtrd 5083 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → ((od‘𝐺)‘𝑥) ∥ (𝑃𝑁))
22 oveq2 7156 . . . . . . . 8 (𝑛 = 𝑁 → (𝑃𝑛) = (𝑃𝑁))
2322breq2d 5069 . . . . . . 7 (𝑛 = 𝑁 → (((od‘𝐺)‘𝑥) ∥ (𝑃𝑛) ↔ ((od‘𝐺)‘𝑥) ∥ (𝑃𝑁)))
2423rspcev 3621 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ ((od‘𝐺)‘𝑥) ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃𝑛))
253, 21, 24syl2anc 586 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃𝑛))
2612, 18odcl2 18684 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥𝑋) → ((od‘𝐺)‘𝑥) ∈ ℕ)
274, 16, 17, 26syl3anc 1366 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → ((od‘𝐺)‘𝑥) ∈ ℕ)
28 pcprmpw2 16210 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃𝑛) ↔ ((od‘𝐺)‘𝑥) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑥)))))
29 pcprmpw 16211 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛) ↔ ((od‘𝐺)‘𝑥) = (𝑃↑(𝑃 pCnt ((od‘𝐺)‘𝑥)))))
3028, 29bitr4d 284 . . . . . 6 ((𝑃 ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
316, 27, 30syl2anc 586 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) ∥ (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
3225, 31mpbid 234 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) ∧ 𝑥𝑋) → ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛))
3332ralrimiva 3180 . . 3 (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) → ∀𝑥𝑋𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛))
3412, 18ispgp 18709 . . 3 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥𝑋𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
351, 2, 33, 34syl3anbrc 1338 . 2 (((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ (♯‘𝑋) = (𝑃𝑁)) → 𝑃 pGrp 𝐺)
3635ex 415 1 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑋) = (𝑃𝑁) → 𝑃 pGrp 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wral 3136  wrex 3137  Vcvv 3493   class class class wbr 5057  cfv 6348  (class class class)co 7148  Fincfn 8501  cn 11630  0cn0 11889  cexp 13421  chash 13682  cdvds 15599  cprime 16007   pCnt cpc 16165  Basecbs 16475  Grpcgrp 18095  odcod 18644   pGrp cpgp 18646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-omul 8099  df-er 8281  df-ec 8283  df-qs 8287  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-acn 9363  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-fz 12885  df-fzo 13026  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-dvds 15600  df-gcd 15836  df-prm 16008  df-pc 16166  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-eqg 18270  df-od 18648  df-pgp 18650
This theorem is referenced by:  pgp0  18713  pgpfi  18722
  Copyright terms: Public domain W3C validator