Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpgrp Structured version   Visualization version   GIF version

Theorem pgpgrp 18209
 Description: Reverse closure for the second argument of pGrp. (Contributed by Mario Carneiro, 15-Jan-2015.)
Assertion
Ref Expression
pgpgrp (𝑃 pGrp 𝐺𝐺 ∈ Grp)

Proof of Theorem pgpgrp
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2760 . . 3 (od‘𝐺) = (od‘𝐺)
31, 2ispgp 18207 . 2 (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃𝑛)))
43simp2bi 1141 1 (𝑃 pGrp 𝐺𝐺 ∈ Grp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051   class class class wbr 4804  ‘cfv 6049  (class class class)co 6813  ℕ0cn0 11484  ↑cexp 13054  ℙcprime 15587  Basecbs 16059  Grpcgrp 17623  odcod 18144   pGrp cpgp 18146 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-xp 5272  df-iota 6012  df-fv 6057  df-ov 6816  df-pgp 18150 This theorem is referenced by:  pgphash  18222
 Copyright terms: Public domain W3C validator