Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  phibnd Structured version   Visualization version   GIF version

Theorem phibnd 15419
 Description: A slightly tighter bound on the value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phibnd (𝑁 ∈ (ℤ‘2) → (ϕ‘𝑁) ≤ (𝑁 − 1))

Proof of Theorem phibnd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fzfi 12727 . . . 4 (1...(𝑁 − 1)) ∈ Fin
2 phibndlem 15418 . . . 4 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)))
3 ssdomg 7961 . . . 4 ((1...(𝑁 − 1)) ∈ Fin → ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...(𝑁 − 1))))
41, 2, 3mpsyl 68 . . 3 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...(𝑁 − 1)))
5 fzfi 12727 . . . . 5 (1...𝑁) ∈ Fin
6 ssrab2 3672 . . . . 5 {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...𝑁)
7 ssfi 8140 . . . . 5 (((1...𝑁) ∈ Fin ∧ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...𝑁)) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin)
85, 6, 7mp2an 707 . . . 4 {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin
9 hashdom 13124 . . . 4 (({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin ∧ (1...(𝑁 − 1)) ∈ Fin) → ((#‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ (#‘(1...(𝑁 − 1))) ↔ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...(𝑁 − 1))))
108, 1, 9mp2an 707 . . 3 ((#‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ (#‘(1...(𝑁 − 1))) ↔ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...(𝑁 − 1)))
114, 10sylibr 224 . 2 (𝑁 ∈ (ℤ‘2) → (#‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ (#‘(1...(𝑁 − 1))))
12 eluz2nn 11686 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
13 phival 15415 . . 3 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (#‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
1412, 13syl 17 . 2 (𝑁 ∈ (ℤ‘2) → (ϕ‘𝑁) = (#‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
15 nnm1nn0 11294 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
16 hashfz1 13090 . . . 4 ((𝑁 − 1) ∈ ℕ0 → (#‘(1...(𝑁 − 1))) = (𝑁 − 1))
1712, 15, 163syl 18 . . 3 (𝑁 ∈ (ℤ‘2) → (#‘(1...(𝑁 − 1))) = (𝑁 − 1))
1817eqcomd 2627 . 2 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) = (#‘(1...(𝑁 − 1))))
1911, 14, 183brtr4d 4655 1 (𝑁 ∈ (ℤ‘2) → (ϕ‘𝑁) ≤ (𝑁 − 1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1480   ∈ wcel 1987  {crab 2912   ⊆ wss 3560   class class class wbr 4623  ‘cfv 5857  (class class class)co 6615   ≼ cdom 7913  Fincfn 7915  1c1 9897   ≤ cle 10035   − cmin 10226  ℕcn 10980  2c2 11030  ℕ0cn0 11252  ℤ≥cuz 11647  ...cfz 12284  #chash 13073   gcd cgcd 15159  ϕcphi 15412 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-xnn0 11324  df-z 11338  df-uz 11648  df-rp 11793  df-fz 12285  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-dvds 14927  df-gcd 15160  df-phi 15414 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator