MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phibndlem Structured version   Visualization version   GIF version

Theorem phibndlem 15259
Description: Lemma for phibnd 15260. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phibndlem (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)))
Distinct variable group:   𝑥,𝑁

Proof of Theorem phibndlem
StepHypRef Expression
1 eluz2nn 11558 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 fzm1 12244 . . . . . . . . 9 (𝑁 ∈ (ℤ‘1) → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁)))
3 nnuz 11555 . . . . . . . . 9 ℕ = (ℤ‘1)
42, 3eleq2s 2705 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁)))
54biimpa 499 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁))
65ord 390 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (1...𝑁)) → (¬ 𝑥 ∈ (1...(𝑁 − 1)) → 𝑥 = 𝑁))
71, 6sylan 486 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) → (¬ 𝑥 ∈ (1...(𝑁 − 1)) → 𝑥 = 𝑁))
8 eluzelz 11529 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
9 gcdid 15032 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁))
108, 9syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 gcd 𝑁) = (abs‘𝑁))
11 nnre 10874 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
12 nnnn0 11146 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
1312nn0ge0d 11201 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
1411, 13absidd 13955 . . . . . . . . . 10 (𝑁 ∈ ℕ → (abs‘𝑁) = 𝑁)
151, 14syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (abs‘𝑁) = 𝑁)
1610, 15eqtrd 2643 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 gcd 𝑁) = 𝑁)
17 eluz2b2 11593 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
1817simprbi 478 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
19 1re 9895 . . . . . . . . . 10 1 ∈ ℝ
20 ltne 9985 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ≠ 1)
2119, 20mpan 701 . . . . . . . . 9 (1 < 𝑁𝑁 ≠ 1)
2218, 21syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 1)
2316, 22eqnetrd 2848 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 gcd 𝑁) ≠ 1)
24 oveq1 6534 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥 gcd 𝑁) = (𝑁 gcd 𝑁))
2524neeq1d 2840 . . . . . . 7 (𝑥 = 𝑁 → ((𝑥 gcd 𝑁) ≠ 1 ↔ (𝑁 gcd 𝑁) ≠ 1))
2623, 25syl5ibrcom 235 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (𝑥 = 𝑁 → (𝑥 gcd 𝑁) ≠ 1))
2726adantr 479 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 = 𝑁 → (𝑥 gcd 𝑁) ≠ 1))
287, 27syld 45 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) → (¬ 𝑥 ∈ (1...(𝑁 − 1)) → (𝑥 gcd 𝑁) ≠ 1))
2928necon4bd 2801 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
3029ralrimiva 2948 . 2 (𝑁 ∈ (ℤ‘2) → ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
31 rabss 3641 . 2 ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)) ↔ ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
3230, 31sylibr 222 1 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wcel 1976  wne 2779  wral 2895  {crab 2899  wss 3539   class class class wbr 4577  cfv 5790  (class class class)co 6527  cr 9791  1c1 9793   < clt 9930  cmin 10117  cn 10867  2c2 10917  cz 11210  cuz 11519  ...cfz 12152  abscabs 13768   gcd cgcd 15000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-sup 8208  df-inf 8209  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-fz 12153  df-seq 12619  df-exp 12678  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-dvds 14768  df-gcd 15001
This theorem is referenced by:  phibnd  15260  dfphi2  15263
  Copyright terms: Public domain W3C validator