MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phibndlem Structured version   Visualization version   GIF version

Theorem phibndlem 15522
Description: Lemma for phibnd 15523. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phibndlem (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)))
Distinct variable group:   𝑥,𝑁

Proof of Theorem phibndlem
StepHypRef Expression
1 eluz2nn 11764 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 fzm1 12458 . . . . . . . . 9 (𝑁 ∈ (ℤ‘1) → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁)))
3 nnuz 11761 . . . . . . . . 9 ℕ = (ℤ‘1)
42, 3eleq2s 2748 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁)))
54biimpa 500 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁))
65ord 391 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (1...𝑁)) → (¬ 𝑥 ∈ (1...(𝑁 − 1)) → 𝑥 = 𝑁))
71, 6sylan 487 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) → (¬ 𝑥 ∈ (1...(𝑁 − 1)) → 𝑥 = 𝑁))
8 eluzelz 11735 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
9 gcdid 15295 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁))
108, 9syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 gcd 𝑁) = (abs‘𝑁))
11 nnre 11065 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
12 nnnn0 11337 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
1312nn0ge0d 11392 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
1411, 13absidd 14205 . . . . . . . . . 10 (𝑁 ∈ ℕ → (abs‘𝑁) = 𝑁)
151, 14syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (abs‘𝑁) = 𝑁)
1610, 15eqtrd 2685 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 gcd 𝑁) = 𝑁)
17 eluz2b2 11799 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
1817simprbi 479 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
19 1re 10077 . . . . . . . . . 10 1 ∈ ℝ
20 ltne 10172 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ≠ 1)
2119, 20mpan 706 . . . . . . . . 9 (1 < 𝑁𝑁 ≠ 1)
2218, 21syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 1)
2316, 22eqnetrd 2890 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 gcd 𝑁) ≠ 1)
24 oveq1 6697 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥 gcd 𝑁) = (𝑁 gcd 𝑁))
2524neeq1d 2882 . . . . . . 7 (𝑥 = 𝑁 → ((𝑥 gcd 𝑁) ≠ 1 ↔ (𝑁 gcd 𝑁) ≠ 1))
2623, 25syl5ibrcom 237 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (𝑥 = 𝑁 → (𝑥 gcd 𝑁) ≠ 1))
2726adantr 480 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 = 𝑁 → (𝑥 gcd 𝑁) ≠ 1))
287, 27syld 47 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) → (¬ 𝑥 ∈ (1...(𝑁 − 1)) → (𝑥 gcd 𝑁) ≠ 1))
2928necon4bd 2843 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
3029ralrimiva 2995 . 2 (𝑁 ∈ (ℤ‘2) → ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
31 rabss 3712 . 2 ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)) ↔ ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
3230, 31sylibr 224 1 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  {crab 2945  wss 3607   class class class wbr 4685  cfv 5926  (class class class)co 6690  cr 9973  1c1 9975   < clt 10112  cmin 10304  cn 11058  2c2 11108  cz 11415  cuz 11725  ...cfz 12364  abscabs 14018   gcd cgcd 15263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264
This theorem is referenced by:  phibnd  15523  dfphi2  15526
  Copyright terms: Public domain W3C validator