MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php3 Structured version   Visualization version   GIF version

Theorem php3 8004
Description: Corollary of Pigeonhole Principle. If 𝐴 is finite and 𝐵 is a proper subset of 𝐴, the 𝐵 is strictly less numerous than 𝐴. Stronger version of Corollary 6C of [Enderton] p. 135. (Contributed by NM, 22-Aug-2008.)
Assertion
Ref Expression
php3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)

Proof of Theorem php3
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 7838 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2 relen 7819 . . . . . . . . 9 Rel ≈
32brrelexi 5068 . . . . . . . 8 (𝐴𝑥𝐴 ∈ V)
4 pssss 3659 . . . . . . . 8 (𝐵𝐴𝐵𝐴)
5 ssdomg 7860 . . . . . . . . 9 (𝐴 ∈ V → (𝐵𝐴𝐵𝐴))
65imp 443 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐵𝐴) → 𝐵𝐴)
73, 4, 6syl2an 492 . . . . . . 7 ((𝐴𝑥𝐵𝐴) → 𝐵𝐴)
87adantll 745 . . . . . 6 (((𝑥 ∈ ω ∧ 𝐴𝑥) ∧ 𝐵𝐴) → 𝐵𝐴)
9 bren 7823 . . . . . . . . 9 (𝐴𝑥 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑥)
10 imass2 5403 . . . . . . . . . . . . . . . . 17 (𝐵𝐴 → (𝑓𝐵) ⊆ (𝑓𝐴))
114, 10syl 17 . . . . . . . . . . . . . . . 16 (𝐵𝐴 → (𝑓𝐵) ⊆ (𝑓𝐴))
1211adantl 480 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊆ (𝑓𝐴))
13 pssnel 3986 . . . . . . . . . . . . . . . . 17 (𝐵𝐴 → ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵))
14 eldif 3545 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
15 f1ofn 6032 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝐴1-1-onto𝑥𝑓 Fn 𝐴)
16 difss 3694 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐵) ⊆ 𝐴
17 fnfvima 6374 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓 Fn 𝐴 ∧ (𝐴𝐵) ⊆ 𝐴𝑦 ∈ (𝐴𝐵)) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵)))
18173expia 1258 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓 Fn 𝐴 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵))))
1915, 16, 18sylancl 692 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵))))
20 dff1o3 6037 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:𝐴1-1-onto𝑥 ↔ (𝑓:𝐴onto𝑥 ∧ Fun 𝑓))
2120simprbi 478 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:𝐴1-1-onto𝑥 → Fun 𝑓)
22 imadif 5869 . . . . . . . . . . . . . . . . . . . . . . . 24 (Fun 𝑓 → (𝑓 “ (𝐴𝐵)) = ((𝑓𝐴) ∖ (𝑓𝐵)))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝐴1-1-onto𝑥 → (𝑓 “ (𝐴𝐵)) = ((𝑓𝐴) ∖ (𝑓𝐵)))
2423eleq2d 2668 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:𝐴1-1-onto𝑥 → ((𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵)) ↔ (𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵))))
2519, 24sylibd 227 . . . . . . . . . . . . . . . . . . . . 21 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵))))
26 n0i 3874 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵)) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
2725, 26syl6 34 . . . . . . . . . . . . . . . . . . . 20 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
2814, 27syl5bir 231 . . . . . . . . . . . . . . . . . . 19 (𝑓:𝐴1-1-onto𝑥 → ((𝑦𝐴 ∧ ¬ 𝑦𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
2928exlimdv 1846 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1-onto𝑥 → (∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
3029imp 443 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐴1-1-onto𝑥 ∧ ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵)) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
3113, 30sylan2 489 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
32 ssdif0 3891 . . . . . . . . . . . . . . . 16 ((𝑓𝐴) ⊆ (𝑓𝐵) ↔ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
3331, 32sylnibr 317 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ¬ (𝑓𝐴) ⊆ (𝑓𝐵))
34 dfpss3 3650 . . . . . . . . . . . . . . 15 ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ ((𝑓𝐵) ⊆ (𝑓𝐴) ∧ ¬ (𝑓𝐴) ⊆ (𝑓𝐵)))
3512, 33, 34sylanbrc 694 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊊ (𝑓𝐴))
36 imadmrn 5378 . . . . . . . . . . . . . . . . 17 (𝑓 “ dom 𝑓) = ran 𝑓
37 f1odm 6035 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1-onto𝑥 → dom 𝑓 = 𝐴)
3837imaeq2d 5368 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1-onto𝑥 → (𝑓 “ dom 𝑓) = (𝑓𝐴))
39 f1ofo 6038 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1-onto𝑥𝑓:𝐴onto𝑥)
40 forn 6012 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴onto𝑥 → ran 𝑓 = 𝑥)
4139, 40syl 17 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1-onto𝑥 → ran 𝑓 = 𝑥)
4236, 38, 413eqtr3a 2663 . . . . . . . . . . . . . . . 16 (𝑓:𝐴1-1-onto𝑥 → (𝑓𝐴) = 𝑥)
4342psseq2d 3657 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1-onto𝑥 → ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ (𝑓𝐵) ⊊ 𝑥))
4443adantr 479 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ (𝑓𝐵) ⊊ 𝑥))
4535, 44mpbid 220 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊊ 𝑥)
46 php 8002 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ (𝑓𝐵) ⊊ 𝑥) → ¬ 𝑥 ≈ (𝑓𝐵))
4745, 46sylan2 489 . . . . . . . . . . . 12 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → ¬ 𝑥 ≈ (𝑓𝐵))
48 f1of1 6030 . . . . . . . . . . . . . . . 16 (𝑓:𝐴1-1-onto𝑥𝑓:𝐴1-1𝑥)
49 f1ores 6045 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1𝑥𝐵𝐴) → (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵))
5048, 4, 49syl2an 492 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵))
51 vex 3171 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
5251resex 5346 . . . . . . . . . . . . . . . . 17 (𝑓𝐵) ∈ V
53 f1oeq1 6021 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑓𝐵) → (𝑦:𝐵1-1-onto→(𝑓𝐵) ↔ (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵)))
5452, 53spcev 3268 . . . . . . . . . . . . . . . 16 ((𝑓𝐵):𝐵1-1-onto→(𝑓𝐵) → ∃𝑦 𝑦:𝐵1-1-onto→(𝑓𝐵))
55 bren 7823 . . . . . . . . . . . . . . . 16 (𝐵 ≈ (𝑓𝐵) ↔ ∃𝑦 𝑦:𝐵1-1-onto→(𝑓𝐵))
5654, 55sylibr 222 . . . . . . . . . . . . . . 15 ((𝑓𝐵):𝐵1-1-onto→(𝑓𝐵) → 𝐵 ≈ (𝑓𝐵))
5750, 56syl 17 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → 𝐵 ≈ (𝑓𝐵))
58 entr 7867 . . . . . . . . . . . . . . 15 ((𝑥𝐵𝐵 ≈ (𝑓𝐵)) → 𝑥 ≈ (𝑓𝐵))
5958expcom 449 . . . . . . . . . . . . . 14 (𝐵 ≈ (𝑓𝐵) → (𝑥𝐵𝑥 ≈ (𝑓𝐵)))
6057, 59syl 17 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑥𝐵𝑥 ≈ (𝑓𝐵)))
6160adantl 480 . . . . . . . . . . . 12 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → (𝑥𝐵𝑥 ≈ (𝑓𝐵)))
6247, 61mtod 187 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → ¬ 𝑥𝐵)
6362exp32 628 . . . . . . . . . 10 (𝑥 ∈ ω → (𝑓:𝐴1-1-onto𝑥 → (𝐵𝐴 → ¬ 𝑥𝐵)))
6463exlimdv 1846 . . . . . . . . 9 (𝑥 ∈ ω → (∃𝑓 𝑓:𝐴1-1-onto𝑥 → (𝐵𝐴 → ¬ 𝑥𝐵)))
659, 64syl5bi 230 . . . . . . . 8 (𝑥 ∈ ω → (𝐴𝑥 → (𝐵𝐴 → ¬ 𝑥𝐵)))
6665imp31 446 . . . . . . 7 (((𝑥 ∈ ω ∧ 𝐴𝑥) ∧ 𝐵𝐴) → ¬ 𝑥𝐵)
67 entr 7867 . . . . . . . . . 10 ((𝐵𝐴𝐴𝑥) → 𝐵𝑥)
6867ex 448 . . . . . . . . 9 (𝐵𝐴 → (𝐴𝑥𝐵𝑥))
69 ensym 7864 . . . . . . . . 9 (𝐵𝑥𝑥𝐵)
7068, 69syl6com 36 . . . . . . . 8 (𝐴𝑥 → (𝐵𝐴𝑥𝐵))
7170ad2antlr 758 . . . . . . 7 (((𝑥 ∈ ω ∧ 𝐴𝑥) ∧ 𝐵𝐴) → (𝐵𝐴𝑥𝐵))
7266, 71mtod 187 . . . . . 6 (((𝑥 ∈ ω ∧ 𝐴𝑥) ∧ 𝐵𝐴) → ¬ 𝐵𝐴)
73 brsdom 7837 . . . . . 6 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵𝐴))
748, 72, 73sylanbrc 694 . . . . 5 (((𝑥 ∈ ω ∧ 𝐴𝑥) ∧ 𝐵𝐴) → 𝐵𝐴)
7574exp31 627 . . . 4 (𝑥 ∈ ω → (𝐴𝑥 → (𝐵𝐴𝐵𝐴)))
7675rexlimiv 3004 . . 3 (∃𝑥 ∈ ω 𝐴𝑥 → (𝐵𝐴𝐵𝐴))
771, 76sylbi 205 . 2 (𝐴 ∈ Fin → (𝐵𝐴𝐵𝐴))
7877imp 443 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wex 1694  wcel 1975  wrex 2892  Vcvv 3168  cdif 3532  wss 3535  wpss 3536  c0 3869   class class class wbr 4573  ccnv 5023  dom cdm 5024  ran crn 5025  cres 5026  cima 5027  Fun wfun 5780   Fn wfn 5781  1-1wf1 5783  ontowfo 5784  1-1-ontowf1o 5785  cfv 5786  ωcom 6930  cen 7811  cdom 7812  csdm 7813  Fincfn 7814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-rab 2900  df-v 3170  df-sbc 3398  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-br 4574  df-opab 4634  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-om 6931  df-er 7602  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818
This theorem is referenced by:  pssinf  8028  f1finf1o  8045  findcard3  8061  fofinf1o  8099  ackbij1b  8917  fincssdom  9001  fin23lem25  9002  canthp1lem2  9327  pwfseqlem4  9336  uzindi  12594  symggen  17655  pgpssslw  17794  pgpfaclem2  18246  ppiltx  24616  finminlem  31284  lindsenlbs  32373
  Copyright terms: Public domain W3C validator