MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php3 Structured version   Visualization version   GIF version

Theorem php3 8131
Description: Corollary of Pigeonhole Principle. If 𝐴 is finite and 𝐵 is a proper subset of 𝐴, the 𝐵 is strictly less numerous than 𝐴. Stronger version of Corollary 6C of [Enderton] p. 135. (Contributed by NM, 22-Aug-2008.)
Assertion
Ref Expression
php3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)

Proof of Theorem php3
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 7964 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2 relen 7945 . . . . . . . . 9 Rel ≈
32brrelexi 5148 . . . . . . . 8 (𝐴𝑥𝐴 ∈ V)
4 pssss 3694 . . . . . . . 8 (𝐵𝐴𝐵𝐴)
5 ssdomg 7986 . . . . . . . . 9 (𝐴 ∈ V → (𝐵𝐴𝐵𝐴))
65imp 445 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐵𝐴) → 𝐵𝐴)
73, 4, 6syl2an 494 . . . . . . 7 ((𝐴𝑥𝐵𝐴) → 𝐵𝐴)
87adantll 749 . . . . . 6 (((𝑥 ∈ ω ∧ 𝐴𝑥) ∧ 𝐵𝐴) → 𝐵𝐴)
9 bren 7949 . . . . . . . . 9 (𝐴𝑥 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑥)
10 imass2 5489 . . . . . . . . . . . . . . . . 17 (𝐵𝐴 → (𝑓𝐵) ⊆ (𝑓𝐴))
114, 10syl 17 . . . . . . . . . . . . . . . 16 (𝐵𝐴 → (𝑓𝐵) ⊆ (𝑓𝐴))
1211adantl 482 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊆ (𝑓𝐴))
13 pssnel 4030 . . . . . . . . . . . . . . . . 17 (𝐵𝐴 → ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵))
14 eldif 3577 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
15 f1ofn 6125 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝐴1-1-onto𝑥𝑓 Fn 𝐴)
16 difss 3729 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐵) ⊆ 𝐴
17 fnfvima 6481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓 Fn 𝐴 ∧ (𝐴𝐵) ⊆ 𝐴𝑦 ∈ (𝐴𝐵)) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵)))
18173expia 1265 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓 Fn 𝐴 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵))))
1915, 16, 18sylancl 693 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵))))
20 dff1o3 6130 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:𝐴1-1-onto𝑥 ↔ (𝑓:𝐴onto𝑥 ∧ Fun 𝑓))
2120simprbi 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:𝐴1-1-onto𝑥 → Fun 𝑓)
22 imadif 5961 . . . . . . . . . . . . . . . . . . . . . . . 24 (Fun 𝑓 → (𝑓 “ (𝐴𝐵)) = ((𝑓𝐴) ∖ (𝑓𝐵)))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝐴1-1-onto𝑥 → (𝑓 “ (𝐴𝐵)) = ((𝑓𝐴) ∖ (𝑓𝐵)))
2423eleq2d 2685 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:𝐴1-1-onto𝑥 → ((𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵)) ↔ (𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵))))
2519, 24sylibd 229 . . . . . . . . . . . . . . . . . . . . 21 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵))))
26 n0i 3912 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵)) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
2725, 26syl6 35 . . . . . . . . . . . . . . . . . . . 20 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
2814, 27syl5bir 233 . . . . . . . . . . . . . . . . . . 19 (𝑓:𝐴1-1-onto𝑥 → ((𝑦𝐴 ∧ ¬ 𝑦𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
2928exlimdv 1859 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1-onto𝑥 → (∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
3029imp 445 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐴1-1-onto𝑥 ∧ ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵)) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
3113, 30sylan2 491 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
32 ssdif0 3933 . . . . . . . . . . . . . . . 16 ((𝑓𝐴) ⊆ (𝑓𝐵) ↔ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
3331, 32sylnibr 319 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ¬ (𝑓𝐴) ⊆ (𝑓𝐵))
34 dfpss3 3685 . . . . . . . . . . . . . . 15 ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ ((𝑓𝐵) ⊆ (𝑓𝐴) ∧ ¬ (𝑓𝐴) ⊆ (𝑓𝐵)))
3512, 33, 34sylanbrc 697 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊊ (𝑓𝐴))
36 imadmrn 5464 . . . . . . . . . . . . . . . . 17 (𝑓 “ dom 𝑓) = ran 𝑓
37 f1odm 6128 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1-onto𝑥 → dom 𝑓 = 𝐴)
3837imaeq2d 5454 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1-onto𝑥 → (𝑓 “ dom 𝑓) = (𝑓𝐴))
39 f1ofo 6131 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1-onto𝑥𝑓:𝐴onto𝑥)
40 forn 6105 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴onto𝑥 → ran 𝑓 = 𝑥)
4139, 40syl 17 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1-onto𝑥 → ran 𝑓 = 𝑥)
4236, 38, 413eqtr3a 2678 . . . . . . . . . . . . . . . 16 (𝑓:𝐴1-1-onto𝑥 → (𝑓𝐴) = 𝑥)
4342psseq2d 3692 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1-onto𝑥 → ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ (𝑓𝐵) ⊊ 𝑥))
4443adantr 481 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ (𝑓𝐵) ⊊ 𝑥))
4535, 44mpbid 222 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊊ 𝑥)
46 php 8129 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ (𝑓𝐵) ⊊ 𝑥) → ¬ 𝑥 ≈ (𝑓𝐵))
4745, 46sylan2 491 . . . . . . . . . . . 12 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → ¬ 𝑥 ≈ (𝑓𝐵))
48 f1of1 6123 . . . . . . . . . . . . . . . 16 (𝑓:𝐴1-1-onto𝑥𝑓:𝐴1-1𝑥)
49 f1ores 6138 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1𝑥𝐵𝐴) → (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵))
5048, 4, 49syl2an 494 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵))
51 vex 3198 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
5251resex 5431 . . . . . . . . . . . . . . . . 17 (𝑓𝐵) ∈ V
53 f1oeq1 6114 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑓𝐵) → (𝑦:𝐵1-1-onto→(𝑓𝐵) ↔ (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵)))
5452, 53spcev 3295 . . . . . . . . . . . . . . . 16 ((𝑓𝐵):𝐵1-1-onto→(𝑓𝐵) → ∃𝑦 𝑦:𝐵1-1-onto→(𝑓𝐵))
55 bren 7949 . . . . . . . . . . . . . . . 16 (𝐵 ≈ (𝑓𝐵) ↔ ∃𝑦 𝑦:𝐵1-1-onto→(𝑓𝐵))
5654, 55sylibr 224 . . . . . . . . . . . . . . 15 ((𝑓𝐵):𝐵1-1-onto→(𝑓𝐵) → 𝐵 ≈ (𝑓𝐵))
5750, 56syl 17 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → 𝐵 ≈ (𝑓𝐵))
58 entr 7993 . . . . . . . . . . . . . . 15 ((𝑥𝐵𝐵 ≈ (𝑓𝐵)) → 𝑥 ≈ (𝑓𝐵))
5958expcom 451 . . . . . . . . . . . . . 14 (𝐵 ≈ (𝑓𝐵) → (𝑥𝐵𝑥 ≈ (𝑓𝐵)))
6057, 59syl 17 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑥𝐵𝑥 ≈ (𝑓𝐵)))
6160adantl 482 . . . . . . . . . . . 12 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → (𝑥𝐵𝑥 ≈ (𝑓𝐵)))
6247, 61mtod 189 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → ¬ 𝑥𝐵)
6362exp32 630 . . . . . . . . . 10 (𝑥 ∈ ω → (𝑓:𝐴1-1-onto𝑥 → (𝐵𝐴 → ¬ 𝑥𝐵)))
6463exlimdv 1859 . . . . . . . . 9 (𝑥 ∈ ω → (∃𝑓 𝑓:𝐴1-1-onto𝑥 → (𝐵𝐴 → ¬ 𝑥𝐵)))
659, 64syl5bi 232 . . . . . . . 8 (𝑥 ∈ ω → (𝐴𝑥 → (𝐵𝐴 → ¬ 𝑥𝐵)))
6665imp31 448 . . . . . . 7 (((𝑥 ∈ ω ∧ 𝐴𝑥) ∧ 𝐵𝐴) → ¬ 𝑥𝐵)
67 entr 7993 . . . . . . . . . 10 ((𝐵𝐴𝐴𝑥) → 𝐵𝑥)
6867ex 450 . . . . . . . . 9 (𝐵𝐴 → (𝐴𝑥𝐵𝑥))
69 ensym 7990 . . . . . . . . 9 (𝐵𝑥𝑥𝐵)
7068, 69syl6com 37 . . . . . . . 8 (𝐴𝑥 → (𝐵𝐴𝑥𝐵))
7170ad2antlr 762 . . . . . . 7 (((𝑥 ∈ ω ∧ 𝐴𝑥) ∧ 𝐵𝐴) → (𝐵𝐴𝑥𝐵))
7266, 71mtod 189 . . . . . 6 (((𝑥 ∈ ω ∧ 𝐴𝑥) ∧ 𝐵𝐴) → ¬ 𝐵𝐴)
73 brsdom 7963 . . . . . 6 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵𝐴))
748, 72, 73sylanbrc 697 . . . . 5 (((𝑥 ∈ ω ∧ 𝐴𝑥) ∧ 𝐵𝐴) → 𝐵𝐴)
7574exp31 629 . . . 4 (𝑥 ∈ ω → (𝐴𝑥 → (𝐵𝐴𝐵𝐴)))
7675rexlimiv 3023 . . 3 (∃𝑥 ∈ ω 𝐴𝑥 → (𝐵𝐴𝐵𝐴))
771, 76sylbi 207 . 2 (𝐴 ∈ Fin → (𝐵𝐴𝐵𝐴))
7877imp 445 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1481  wex 1702  wcel 1988  wrex 2910  Vcvv 3195  cdif 3564  wss 3567  wpss 3568  c0 3907   class class class wbr 4644  ccnv 5103  dom cdm 5104  ran crn 5105  cres 5106  cima 5107  Fun wfun 5870   Fn wfn 5871  1-1wf1 5873  ontowfo 5874  1-1-ontowf1o 5875  cfv 5876  ωcom 7050  cen 7937  cdom 7938  csdm 7939  Fincfn 7940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-om 7051  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944
This theorem is referenced by:  pssinf  8155  f1finf1o  8172  findcard3  8188  fofinf1o  8226  ackbij1b  9046  fincssdom  9130  fin23lem25  9131  canthp1lem2  9460  pwfseqlem4  9469  uzindi  12764  symggen  17871  pgpssslw  18010  pgpfaclem2  18462  ppiltx  24884  finminlem  32287  lindsenlbs  33375
  Copyright terms: Public domain W3C validator