Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpcerOLD Structured version   Visualization version   GIF version

Theorem phtpcerOLD 22718
 Description: Obsolete proof of phtpcer 22717 as of 1-May-2021. Path homotopy is an equivalence relation. Proposition 1.2 of [Hatcher] p. 26. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 6-Jul-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
phtpcerOLD ( ≃ph𝐽) Er (II Cn 𝐽)

Proof of Theorem phtpcerOLD
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phtpcrel 22715 . . . 4 Rel ( ≃ph𝐽)
21a1i 11 . . 3 (⊤ → Rel ( ≃ph𝐽))
3 isphtpc 22716 . . . . . 6 (𝑥( ≃ph𝐽)𝑦 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑦 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑦) ≠ ∅))
43simp2bi 1075 . . . . 5 (𝑥( ≃ph𝐽)𝑦𝑦 ∈ (II Cn 𝐽))
53simp1bi 1074 . . . . 5 (𝑥( ≃ph𝐽)𝑦𝑥 ∈ (II Cn 𝐽))
63simp3bi 1076 . . . . . . 7 (𝑥( ≃ph𝐽)𝑦 → (𝑥(PHtpy‘𝐽)𝑦) ≠ ∅)
7 n0 3912 . . . . . . 7 ((𝑥(PHtpy‘𝐽)𝑦) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
86, 7sylib 208 . . . . . 6 (𝑥( ≃ph𝐽)𝑦 → ∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
95adantr 481 . . . . . . . 8 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → 𝑥 ∈ (II Cn 𝐽))
104adantr 481 . . . . . . . 8 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → 𝑦 ∈ (II Cn 𝐽))
11 eqid 2621 . . . . . . . 8 (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝑓(1 − 𝑣))) = (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝑓(1 − 𝑣)))
12 simpr 477 . . . . . . . 8 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
139, 10, 11, 12phtpycom 22710 . . . . . . 7 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝑓(1 − 𝑣))) ∈ (𝑦(PHtpy‘𝐽)𝑥))
14 ne0i 3902 . . . . . . 7 ((𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝑓(1 − 𝑣))) ∈ (𝑦(PHtpy‘𝐽)𝑥) → (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)
1513, 14syl 17 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦)) → (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)
168, 15exlimddv 1860 . . . . 5 (𝑥( ≃ph𝐽)𝑦 → (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅)
17 isphtpc 22716 . . . . 5 (𝑦( ≃ph𝐽)𝑥 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑥) ≠ ∅))
184, 5, 16, 17syl3anbrc 1244 . . . 4 (𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑥)
1918adantl 482 . . 3 ((⊤ ∧ 𝑥( ≃ph𝐽)𝑦) → 𝑦( ≃ph𝐽)𝑥)
205adantr 481 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑥 ∈ (II Cn 𝐽))
21 simpr 477 . . . . . . 7 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑦( ≃ph𝐽)𝑧)
22 isphtpc 22716 . . . . . . 7 (𝑦( ≃ph𝐽)𝑧 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ 𝑧 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑧) ≠ ∅))
2321, 22sylib 208 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (𝑦 ∈ (II Cn 𝐽) ∧ 𝑧 ∈ (II Cn 𝐽) ∧ (𝑦(PHtpy‘𝐽)𝑧) ≠ ∅))
2423simp2d 1072 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑧 ∈ (II Cn 𝐽))
256adantr 481 . . . . . . . 8 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (𝑥(PHtpy‘𝐽)𝑦) ≠ ∅)
2625, 7sylib 208 . . . . . . 7 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → ∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
2723simp3d 1073 . . . . . . . 8 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (𝑦(PHtpy‘𝐽)𝑧) ≠ ∅)
28 n0 3912 . . . . . . . 8 ((𝑦(PHtpy‘𝐽)𝑧) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))
2927, 28sylib 208 . . . . . . 7 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → ∃𝑔 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))
30 eeanv 2181 . . . . . . 7 (∃𝑓𝑔(𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) ↔ (∃𝑓 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ ∃𝑔 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)))
3126, 29, 30sylanbrc 697 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → ∃𝑓𝑔(𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)))
32 eqid 2621 . . . . . . . . . 10 (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ if(𝑣 ≤ (1 / 2), (𝑢𝑓(2 · 𝑣)), (𝑢𝑔((2 · 𝑣) − 1)))) = (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ if(𝑣 ≤ (1 / 2), (𝑢𝑓(2 · 𝑣)), (𝑢𝑔((2 · 𝑣) − 1))))
3320adantr 481 . . . . . . . . . 10 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑥 ∈ (II Cn 𝐽))
3423simp1d 1071 . . . . . . . . . . 11 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑦 ∈ (II Cn 𝐽))
3534adantr 481 . . . . . . . . . 10 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑦 ∈ (II Cn 𝐽))
3624adantr 481 . . . . . . . . . 10 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑧 ∈ (II Cn 𝐽))
37 simprl 793 . . . . . . . . . 10 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦))
38 simprr 795 . . . . . . . . . 10 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))
3932, 33, 35, 36, 37, 38phtpycc 22713 . . . . . . . . 9 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ if(𝑣 ≤ (1 / 2), (𝑢𝑓(2 · 𝑣)), (𝑢𝑔((2 · 𝑣) − 1)))) ∈ (𝑥(PHtpy‘𝐽)𝑧))
40 ne0i 3902 . . . . . . . . 9 ((𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ if(𝑣 ≤ (1 / 2), (𝑢𝑓(2 · 𝑣)), (𝑢𝑔((2 · 𝑣) − 1)))) ∈ (𝑥(PHtpy‘𝐽)𝑧) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅)
4139, 40syl 17 . . . . . . . 8 (((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) ∧ (𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧))) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅)
4241ex 450 . . . . . . 7 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → ((𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅))
4342exlimdvv 1859 . . . . . 6 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (∃𝑓𝑔(𝑓 ∈ (𝑥(PHtpy‘𝐽)𝑦) ∧ 𝑔 ∈ (𝑦(PHtpy‘𝐽)𝑧)) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅))
4431, 43mpd 15 . . . . 5 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅)
45 isphtpc 22716 . . . . 5 (𝑥( ≃ph𝐽)𝑧 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑧 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑧) ≠ ∅))
4620, 24, 44, 45syl3anbrc 1244 . . . 4 ((𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧) → 𝑥( ≃ph𝐽)𝑧)
4746adantl 482 . . 3 ((⊤ ∧ (𝑥( ≃ph𝐽)𝑦𝑦( ≃ph𝐽)𝑧)) → 𝑥( ≃ph𝐽)𝑧)
48 eqid 2621 . . . . . . . . . 10 (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ (𝑥𝑦)) = (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ (𝑥𝑦))
49 id 22 . . . . . . . . . 10 (𝑥 ∈ (II Cn 𝐽) → 𝑥 ∈ (II Cn 𝐽))
5048, 49phtpyid 22711 . . . . . . . . 9 (𝑥 ∈ (II Cn 𝐽) → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ (𝑥𝑦)) ∈ (𝑥(PHtpy‘𝐽)𝑥))
51 ne0i 3902 . . . . . . . . 9 ((𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ (𝑥𝑦)) ∈ (𝑥(PHtpy‘𝐽)𝑥) → (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅)
5250, 51syl 17 . . . . . . . 8 (𝑥 ∈ (II Cn 𝐽) → (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅)
5352ancli 573 . . . . . . 7 (𝑥 ∈ (II Cn 𝐽) → (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅))
5453pm4.71ri 664 . . . . . 6 (𝑥 ∈ (II Cn 𝐽) ↔ ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅) ∧ 𝑥 ∈ (II Cn 𝐽)))
55 df-3an 1038 . . . . . 6 ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅ ∧ 𝑥 ∈ (II Cn 𝐽)) ↔ ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅) ∧ 𝑥 ∈ (II Cn 𝐽)))
56 3ancomb 1045 . . . . . 6 ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅ ∧ 𝑥 ∈ (II Cn 𝐽)) ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅))
5754, 55, 563bitr2i 288 . . . . 5 (𝑥 ∈ (II Cn 𝐽) ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅))
58 isphtpc 22716 . . . . 5 (𝑥( ≃ph𝐽)𝑥 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ 𝑥 ∈ (II Cn 𝐽) ∧ (𝑥(PHtpy‘𝐽)𝑥) ≠ ∅))
5957, 58bitr4i 267 . . . 4 (𝑥 ∈ (II Cn 𝐽) ↔ 𝑥( ≃ph𝐽)𝑥)
6059a1i 11 . . 3 (⊤ → (𝑥 ∈ (II Cn 𝐽) ↔ 𝑥( ≃ph𝐽)𝑥))
612, 19, 47, 60iserd 7720 . 2 (⊤ → ( ≃ph𝐽) Er (II Cn 𝐽))
6261trud 1490 1 ( ≃ph𝐽) Er (II Cn 𝐽)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 384   ∧ w3a 1036  ⊤wtru 1481  ∃wex 1701   ∈ wcel 1987   ≠ wne 2790  ∅c0 3896  ifcif 4063   class class class wbr 4618  Rel wrel 5084  ‘cfv 5852  (class class class)co 6610   ↦ cmpt2 6612   Er wer 7691  0cc0 9888  1c1 9889   · cmul 9893   ≤ cle 10027   − cmin 10218   / cdiv 10636  2c2 11022  [,]cicc 12128   Cn ccn 20951  IIcii 22601  PHtpycphtpy 22690   ≃phcphtpc 22691 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-mulf 9968 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-icc 12132  df-fz 12277  df-fzo 12415  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-pt 16037  df-prds 16040  df-xrs 16094  df-qtop 16099  df-imas 16100  df-xps 16102  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-mulg 17473  df-cntz 17682  df-cmn 18127  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cld 20746  df-cn 20954  df-cnp 20955  df-tx 21288  df-hmeo 21481  df-xms 22048  df-ms 22049  df-tms 22050  df-ii 22603  df-htpy 22692  df-phtpy 22693  df-phtpc 22714 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator