MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1addf Structured version   Visualization version   GIF version

Theorem pi1addf 22968
Description: The group operation of π1 is a binary operation. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
elpi1.g 𝐺 = (𝐽 π1 𝑌)
elpi1.b 𝐵 = (Base‘𝐺)
elpi1.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
elpi1.2 (𝜑𝑌𝑋)
pi1addf.p + = (+g𝐺)
Assertion
Ref Expression
pi1addf (𝜑+ :(𝐵 × 𝐵)⟶𝐵)

Proof of Theorem pi1addf
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2725 . . . . . 6 (𝜑 → ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)) = ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)))
2 eqidd 2725 . . . . . 6 (𝜑 → (Base‘(𝐽 Ω1 𝑌)) = (Base‘(𝐽 Ω1 𝑌)))
3 fvexd 6316 . . . . . 6 (𝜑 → ( ≃ph𝐽) ∈ V)
4 ovexd 6795 . . . . . 6 (𝜑 → (𝐽 Ω1 𝑌) ∈ V)
5 elpi1.g . . . . . . . 8 𝐺 = (𝐽 π1 𝑌)
6 elpi1.1 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
7 elpi1.2 . . . . . . . 8 (𝜑𝑌𝑋)
8 eqid 2724 . . . . . . . 8 (𝐽 Ω1 𝑌) = (𝐽 Ω1 𝑌)
9 elpi1.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
109a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐺))
115, 6, 7, 8, 10, 2pi1blem 22960 . . . . . . 7 (𝜑 → ((( ≃ph𝐽) “ (Base‘(𝐽 Ω1 𝑌))) ⊆ (Base‘(𝐽 Ω1 𝑌)) ∧ (Base‘(𝐽 Ω1 𝑌)) ⊆ (II Cn 𝐽)))
1211simpld 477 . . . . . 6 (𝜑 → (( ≃ph𝐽) “ (Base‘(𝐽 Ω1 𝑌))) ⊆ (Base‘(𝐽 Ω1 𝑌)))
131, 2, 3, 4, 12qusin 16327 . . . . 5 (𝜑 → ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)) = ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌))))))
145, 6, 7, 8pi1val 22958 . . . . 5 (𝜑𝐺 = ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)))
155, 6, 7, 8, 10, 2pi1buni 22961 . . . . . . . 8 (𝜑 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
1615sqxpeqd 5250 . . . . . . 7 (𝜑 → ( 𝐵 × 𝐵) = ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌))))
1716ineq2d 3922 . . . . . 6 (𝜑 → (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (( ≃ph𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌)))))
1817oveq2d 6781 . . . . 5 (𝜑 → ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))) = ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌))))))
1913, 14, 183eqtr4d 2768 . . . 4 (𝜑𝐺 = ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))
20 phtpcer 22916 . . . . . 6 ( ≃ph𝐽) Er (II Cn 𝐽)
2120a1i 11 . . . . 5 (𝜑 → ( ≃ph𝐽) Er (II Cn 𝐽))
2211simprd 482 . . . . . 6 (𝜑 → (Base‘(𝐽 Ω1 𝑌)) ⊆ (II Cn 𝐽))
2315, 22eqsstrd 3745 . . . . 5 (𝜑 𝐵 ⊆ (II Cn 𝐽))
2421, 23erinxp 7939 . . . 4 (𝜑 → (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) Er 𝐵)
25 eqid 2724 . . . . 5 (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))
26 eqid 2724 . . . . 5 (+g‘(𝐽 Ω1 𝑌)) = (+g‘(𝐽 Ω1 𝑌))
275, 6, 7, 10, 25, 8, 26pi1cpbl 22965 . . . 4 (𝜑 → ((𝑎(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑐𝑏(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑑) → (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(+g‘(𝐽 Ω1 𝑌))𝑑)))
286adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝐽 ∈ (TopOn‘𝑋))
297adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝑌𝑋)
308, 28, 29om1plusg 22955 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → (*𝑝𝐽) = (+g‘(𝐽 Ω1 𝑌)))
3130oveqd 6782 . . . . 5 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → (𝑐(*𝑝𝐽)𝑑) = (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑))
3215adantr 472 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
33 simprl 811 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝑐 𝐵)
34 simprr 813 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝑑 𝐵)
358, 28, 29, 32, 33, 34om1addcl 22954 . . . . 5 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → (𝑐(*𝑝𝐽)𝑑) ∈ 𝐵)
3631, 35eqeltrrd 2804 . . . 4 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑) ∈ 𝐵)
37 pi1addf.p . . . 4 + = (+g𝐺)
3819, 15, 24, 4, 27, 36, 26, 37qusaddf 16337 . . 3 (𝜑+ :(( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))) × ( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))⟶( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))
395, 6, 7, 10, 25pi1bas3 22964 . . . . 5 (𝜑𝐵 = ( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))
4039sqxpeqd 5250 . . . 4 (𝜑 → (𝐵 × 𝐵) = (( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))) × ( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))))
4140feq2d 6144 . . 3 (𝜑 → ( + :(𝐵 × 𝐵)⟶( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))) ↔ + :(( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))) × ( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))⟶( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))))
4238, 41mpbird 247 . 2 (𝜑+ :(𝐵 × 𝐵)⟶( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))
4339feq3d 6145 . 2 (𝜑 → ( + :(𝐵 × 𝐵)⟶𝐵+ :(𝐵 × 𝐵)⟶( 𝐵 / (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))))
4442, 43mpbird 247 1 (𝜑+ :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1596  wcel 2103  Vcvv 3304  cin 3679  wss 3680   cuni 4544   × cxp 5216  cima 5221  wf 5997  cfv 6001  (class class class)co 6765   Er wer 7859   / cqs 7861  Basecbs 15980  +gcplusg 16064   /s cqus 16288  TopOnctopon 20838   Cn ccn 21151  IIcii 22800  phcphtpc 22890  *𝑝cpco 22921   Ω1 comi 22922   π1 cpi1 22924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127  ax-mulf 10129
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-om 7183  df-1st 7285  df-2nd 7286  df-supp 7416  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-ec 7864  df-qs 7868  df-map 7976  df-ixp 8026  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fsupp 8392  df-fi 8433  df-sup 8464  df-inf 8465  df-oi 8531  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-z 11491  df-dec 11607  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-ioo 12293  df-icc 12296  df-fz 12441  df-fzo 12581  df-seq 12917  df-exp 12976  df-hash 13233  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-mulr 16078  df-starv 16079  df-sca 16080  df-vsca 16081  df-ip 16082  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-hom 16089  df-cco 16090  df-rest 16206  df-topn 16207  df-0g 16225  df-gsum 16226  df-topgen 16227  df-pt 16228  df-prds 16231  df-xrs 16285  df-qtop 16290  df-imas 16291  df-qus 16292  df-xps 16293  df-mre 16369  df-mrc 16370  df-acs 16372  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-submnd 17458  df-mulg 17663  df-cntz 17871  df-cmn 18316  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-cnfld 19870  df-top 20822  df-topon 20839  df-topsp 20860  df-bases 20873  df-cld 20946  df-cn 21154  df-cnp 21155  df-tx 21488  df-hmeo 21681  df-xms 22247  df-ms 22248  df-tms 22249  df-ii 22802  df-htpy 22891  df-phtpy 22892  df-phtpc 22913  df-pco 22926  df-om1 22927  df-pi1 22929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator