MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1addval Structured version   Visualization version   GIF version

Theorem pi1addval 23040
Description: The concatenation of two path-homotopy classes in the fundamental group. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
elpi1.g 𝐺 = (𝐽 π1 𝑌)
elpi1.b 𝐵 = (Base‘𝐺)
elpi1.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
elpi1.2 (𝜑𝑌𝑋)
pi1addf.p + = (+g𝐺)
pi1addval.3 (𝜑𝑀 𝐵)
pi1addval.4 (𝜑𝑁 𝐵)
Assertion
Ref Expression
pi1addval (𝜑 → ([𝑀]( ≃ph𝐽) + [𝑁]( ≃ph𝐽)) = [(𝑀(*𝑝𝐽)𝑁)]( ≃ph𝐽))

Proof of Theorem pi1addval
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1addval.3 . . 3 (𝜑𝑀 𝐵)
2 pi1addval.4 . . 3 (𝜑𝑁 𝐵)
3 eqidd 2753 . . . . . 6 (𝜑 → ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)) = ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)))
4 eqidd 2753 . . . . . 6 (𝜑 → (Base‘(𝐽 Ω1 𝑌)) = (Base‘(𝐽 Ω1 𝑌)))
5 fvexd 6356 . . . . . 6 (𝜑 → ( ≃ph𝐽) ∈ V)
6 ovexd 6835 . . . . . 6 (𝜑 → (𝐽 Ω1 𝑌) ∈ V)
7 elpi1.g . . . . . . . 8 𝐺 = (𝐽 π1 𝑌)
8 elpi1.1 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
9 elpi1.2 . . . . . . . 8 (𝜑𝑌𝑋)
10 eqid 2752 . . . . . . . 8 (𝐽 Ω1 𝑌) = (𝐽 Ω1 𝑌)
11 elpi1.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
1211a1i 11 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐺))
137, 8, 9, 10, 12, 4pi1blem 23031 . . . . . . 7 (𝜑 → ((( ≃ph𝐽) “ (Base‘(𝐽 Ω1 𝑌))) ⊆ (Base‘(𝐽 Ω1 𝑌)) ∧ (Base‘(𝐽 Ω1 𝑌)) ⊆ (II Cn 𝐽)))
1413simpld 477 . . . . . 6 (𝜑 → (( ≃ph𝐽) “ (Base‘(𝐽 Ω1 𝑌))) ⊆ (Base‘(𝐽 Ω1 𝑌)))
153, 4, 5, 6, 14qusin 16398 . . . . 5 (𝜑 → ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)) = ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌))))))
167, 8, 9, 10pi1val 23029 . . . . 5 (𝜑𝐺 = ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)))
177, 8, 9, 10, 12, 4pi1buni 23032 . . . . . . . 8 (𝜑 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
1817sqxpeqd 5290 . . . . . . 7 (𝜑 → ( 𝐵 × 𝐵) = ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌))))
1918ineq2d 3949 . . . . . 6 (𝜑 → (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (( ≃ph𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌)))))
2019oveq2d 6821 . . . . 5 (𝜑 → ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))) = ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ((Base‘(𝐽 Ω1 𝑌)) × (Base‘(𝐽 Ω1 𝑌))))))
2115, 16, 203eqtr4d 2796 . . . 4 (𝜑𝐺 = ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))
22 phtpcer 22987 . . . . . 6 ( ≃ph𝐽) Er (II Cn 𝐽)
2322a1i 11 . . . . 5 (𝜑 → ( ≃ph𝐽) Er (II Cn 𝐽))
2413simprd 482 . . . . . 6 (𝜑 → (Base‘(𝐽 Ω1 𝑌)) ⊆ (II Cn 𝐽))
2517, 24eqsstrd 3772 . . . . 5 (𝜑 𝐵 ⊆ (II Cn 𝐽))
2623, 25erinxp 7980 . . . 4 (𝜑 → (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) Er 𝐵)
27 eqid 2752 . . . . 5 (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))
28 eqid 2752 . . . . 5 (+g‘(𝐽 Ω1 𝑌)) = (+g‘(𝐽 Ω1 𝑌))
297, 8, 9, 12, 27, 10, 28pi1cpbl 23036 . . . 4 (𝜑 → ((𝑎(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑐𝑏(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑑) → (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(+g‘(𝐽 Ω1 𝑌))𝑑)))
3010, 8, 9om1plusg 23026 . . . . . . 7 (𝜑 → (*𝑝𝐽) = (+g‘(𝐽 Ω1 𝑌)))
3130adantr 472 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → (*𝑝𝐽) = (+g‘(𝐽 Ω1 𝑌)))
3231oveqd 6822 . . . . 5 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → (𝑐(*𝑝𝐽)𝑑) = (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑))
338adantr 472 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝐽 ∈ (TopOn‘𝑋))
349adantr 472 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝑌𝑋)
3517adantr 472 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
36 simprl 811 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝑐 𝐵)
37 simprr 813 . . . . . 6 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → 𝑑 𝐵)
3810, 33, 34, 35, 36, 37om1addcl 23025 . . . . 5 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → (𝑐(*𝑝𝐽)𝑑) ∈ 𝐵)
3932, 38eqeltrrd 2832 . . . 4 ((𝜑 ∧ (𝑐 𝐵𝑑 𝐵)) → (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑) ∈ 𝐵)
40 pi1addf.p . . . 4 + = (+g𝐺)
4121, 17, 26, 6, 29, 39, 28, 40qusaddval 16407 . . 3 ((𝜑𝑀 𝐵𝑁 𝐵) → ([𝑀](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) + [𝑁](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))) = [(𝑀(+g‘(𝐽 Ω1 𝑌))𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
421, 2, 41mpd3an23 1567 . 2 (𝜑 → ([𝑀](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) + [𝑁](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))) = [(𝑀(+g‘(𝐽 Ω1 𝑌))𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
4317imaeq2d 5616 . . . . 5 (𝜑 → (( ≃ph𝐽) “ 𝐵) = (( ≃ph𝐽) “ (Base‘(𝐽 Ω1 𝑌))))
4414, 43, 173sstr4d 3781 . . . 4 (𝜑 → (( ≃ph𝐽) “ 𝐵) ⊆ 𝐵)
45 ecinxp 7981 . . . 4 (((( ≃ph𝐽) “ 𝐵) ⊆ 𝐵𝑀 𝐵) → [𝑀]( ≃ph𝐽) = [𝑀](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
4644, 1, 45syl2anc 696 . . 3 (𝜑 → [𝑀]( ≃ph𝐽) = [𝑀](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
47 ecinxp 7981 . . . 4 (((( ≃ph𝐽) “ 𝐵) ⊆ 𝐵𝑁 𝐵) → [𝑁]( ≃ph𝐽) = [𝑁](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
4844, 2, 47syl2anc 696 . . 3 (𝜑 → [𝑁]( ≃ph𝐽) = [𝑁](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
4946, 48oveq12d 6823 . 2 (𝜑 → ([𝑀]( ≃ph𝐽) + [𝑁]( ≃ph𝐽)) = ([𝑀](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) + [𝑁](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))
5010, 8, 9, 17, 1, 2om1addcl 23025 . . . 4 (𝜑 → (𝑀(*𝑝𝐽)𝑁) ∈ 𝐵)
51 ecinxp 7981 . . . 4 (((( ≃ph𝐽) “ 𝐵) ⊆ 𝐵 ∧ (𝑀(*𝑝𝐽)𝑁) ∈ 𝐵) → [(𝑀(*𝑝𝐽)𝑁)]( ≃ph𝐽) = [(𝑀(*𝑝𝐽)𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
5244, 50, 51syl2anc 696 . . 3 (𝜑 → [(𝑀(*𝑝𝐽)𝑁)]( ≃ph𝐽) = [(𝑀(*𝑝𝐽)𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
5330oveqd 6822 . . . 4 (𝜑 → (𝑀(*𝑝𝐽)𝑁) = (𝑀(+g‘(𝐽 Ω1 𝑌))𝑁))
5453eceq1d 7942 . . 3 (𝜑 → [(𝑀(*𝑝𝐽)𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = [(𝑀(+g‘(𝐽 Ω1 𝑌))𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
5552, 54eqtrd 2786 . 2 (𝜑 → [(𝑀(*𝑝𝐽)𝑁)]( ≃ph𝐽) = [(𝑀(+g‘(𝐽 Ω1 𝑌))𝑁)](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
5642, 49, 553eqtr4d 2796 1 (𝜑 → ([𝑀]( ≃ph𝐽) + [𝑁]( ≃ph𝐽)) = [(𝑀(*𝑝𝐽)𝑁)]( ≃ph𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1624  wcel 2131  Vcvv 3332  cin 3706  wss 3707   cuni 4580   × cxp 5256  cima 5261  cfv 6041  (class class class)co 6805   Er wer 7900  [cec 7901  Basecbs 16051  +gcplusg 16135   /s cqus 16359  TopOnctopon 20909   Cn ccn 21222  IIcii 22871  phcphtpc 22961  *𝑝cpco 22992   Ω1 comi 22993   π1 cpi1 22995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198  ax-mulf 10200
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-ec 7905  df-qs 7909  df-map 8017  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-fi 8474  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-q 11974  df-rp 12018  df-xneg 12131  df-xadd 12132  df-xmul 12133  df-ioo 12364  df-icc 12367  df-fz 12512  df-fzo 12652  df-seq 12988  df-exp 13047  df-hash 13304  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-starv 16150  df-sca 16151  df-vsca 16152  df-ip 16153  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-hom 16160  df-cco 16161  df-rest 16277  df-topn 16278  df-0g 16296  df-gsum 16297  df-topgen 16298  df-pt 16299  df-prds 16302  df-xrs 16356  df-qtop 16361  df-imas 16362  df-qus 16363  df-xps 16364  df-mre 16440  df-mrc 16441  df-acs 16443  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-submnd 17529  df-mulg 17734  df-cntz 17942  df-cmn 18387  df-psmet 19932  df-xmet 19933  df-met 19934  df-bl 19935  df-mopn 19936  df-cnfld 19941  df-top 20893  df-topon 20910  df-topsp 20931  df-bases 20944  df-cld 21017  df-cn 21225  df-cnp 21226  df-tx 21559  df-hmeo 21752  df-xms 22318  df-ms 22319  df-tms 22320  df-ii 22873  df-htpy 22962  df-phtpy 22963  df-phtpc 22984  df-pco 22997  df-om1 22998  df-pi1 23000
This theorem is referenced by:  pi1inv  23044  pi1xfr  23047  pi1coghm  23053
  Copyright terms: Public domain W3C validator