MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1cpbl Structured version   Visualization version   GIF version

Theorem pi1cpbl 22747
Description: The group operation, loop concatenation, is compatible with homotopy equivalence. (Contributed by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
pi1val.g 𝐺 = (𝐽 π1 𝑌)
pi1val.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1val.2 (𝜑𝑌𝑋)
pi1bas2.b (𝜑𝐵 = (Base‘𝐺))
pi1bas3.r 𝑅 = (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))
pi1cpbl.o 𝑂 = (𝐽 Ω1 𝑌)
pi1cpbl.a + = (+g𝑂)
Assertion
Ref Expression
pi1cpbl (𝜑 → ((𝑀𝑅𝑁𝑃𝑅𝑄) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄)))

Proof of Theorem pi1cpbl
StepHypRef Expression
1 pi1cpbl.o . . . . 5 𝑂 = (𝐽 Ω1 𝑌)
2 pi1val.1 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
32adantr 481 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝐽 ∈ (TopOn‘𝑋))
4 pi1val.2 . . . . . 6 (𝜑𝑌𝑋)
54adantr 481 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑌𝑋)
6 pi1val.g . . . . . 6 𝐺 = (𝐽 π1 𝑌)
7 pi1bas2.b . . . . . . 7 (𝜑𝐵 = (Base‘𝐺))
87adantr 481 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝐵 = (Base‘𝐺))
9 eqidd 2627 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (Base‘𝑂) = (Base‘𝑂))
106, 3, 5, 1, 8, 9pi1buni 22743 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝐵 = (Base‘𝑂))
11 simprl 793 . . . . . . 7 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑀𝑅𝑁)
12 pi1bas3.r . . . . . . . . 9 𝑅 = (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))
1312breqi 4624 . . . . . . . 8 (𝑀𝑅𝑁𝑀(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑁)
14 brinxp2 5146 . . . . . . . 8 (𝑀(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑁 ↔ (𝑀 𝐵𝑁 𝐵𝑀( ≃ph𝐽)𝑁))
1513, 14bitri 264 . . . . . . 7 (𝑀𝑅𝑁 ↔ (𝑀 𝐵𝑁 𝐵𝑀( ≃ph𝐽)𝑁))
1611, 15sylib 208 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀 𝐵𝑁 𝐵𝑀( ≃ph𝐽)𝑁))
1716simp1d 1071 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑀 𝐵)
18 simprr 795 . . . . . . 7 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑃𝑅𝑄)
1912breqi 4624 . . . . . . . 8 (𝑃𝑅𝑄𝑃(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑄)
20 brinxp2 5146 . . . . . . . 8 (𝑃(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑄 ↔ (𝑃 𝐵𝑄 𝐵𝑃( ≃ph𝐽)𝑄))
2119, 20bitri 264 . . . . . . 7 (𝑃𝑅𝑄 ↔ (𝑃 𝐵𝑄 𝐵𝑃( ≃ph𝐽)𝑄))
2218, 21sylib 208 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑃 𝐵𝑄 𝐵𝑃( ≃ph𝐽)𝑄))
2322simp1d 1071 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑃 𝐵)
241, 3, 5, 10, 17, 23om1addcl 22736 . . . 4 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀(*𝑝𝐽)𝑃) ∈ 𝐵)
2516simp2d 1072 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑁 𝐵)
2622simp2d 1072 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑄 𝐵)
271, 3, 5, 10, 25, 26om1addcl 22736 . . . 4 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑁(*𝑝𝐽)𝑄) ∈ 𝐵)
286, 3, 5, 8pi1eluni 22745 . . . . . . . 8 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀 𝐵 ↔ (𝑀 ∈ (II Cn 𝐽) ∧ (𝑀‘0) = 𝑌 ∧ (𝑀‘1) = 𝑌)))
2917, 28mpbid 222 . . . . . . 7 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀 ∈ (II Cn 𝐽) ∧ (𝑀‘0) = 𝑌 ∧ (𝑀‘1) = 𝑌))
3029simp3d 1073 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀‘1) = 𝑌)
316, 3, 5, 8pi1eluni 22745 . . . . . . . 8 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑃 𝐵 ↔ (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)))
3223, 31mpbid 222 . . . . . . 7 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))
3332simp2d 1072 . . . . . 6 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑃‘0) = 𝑌)
3430, 33eqtr4d 2663 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀‘1) = (𝑃‘0))
3516simp3d 1073 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑀( ≃ph𝐽)𝑁)
3622simp3d 1073 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → 𝑃( ≃ph𝐽)𝑄)
3734, 35, 36pcohtpy 22723 . . . 4 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀(*𝑝𝐽)𝑃)( ≃ph𝐽)(𝑁(*𝑝𝐽)𝑄))
3812breqi 4624 . . . . 5 ((𝑀(*𝑝𝐽)𝑃)𝑅(𝑁(*𝑝𝐽)𝑄) ↔ (𝑀(*𝑝𝐽)𝑃)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑁(*𝑝𝐽)𝑄))
39 brinxp2 5146 . . . . 5 ((𝑀(*𝑝𝐽)𝑃)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑁(*𝑝𝐽)𝑄) ↔ ((𝑀(*𝑝𝐽)𝑃) ∈ 𝐵 ∧ (𝑁(*𝑝𝐽)𝑄) ∈ 𝐵 ∧ (𝑀(*𝑝𝐽)𝑃)( ≃ph𝐽)(𝑁(*𝑝𝐽)𝑄)))
4038, 39bitri 264 . . . 4 ((𝑀(*𝑝𝐽)𝑃)𝑅(𝑁(*𝑝𝐽)𝑄) ↔ ((𝑀(*𝑝𝐽)𝑃) ∈ 𝐵 ∧ (𝑁(*𝑝𝐽)𝑄) ∈ 𝐵 ∧ (𝑀(*𝑝𝐽)𝑃)( ≃ph𝐽)(𝑁(*𝑝𝐽)𝑄)))
4124, 27, 37, 40syl3anbrc 1244 . . 3 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀(*𝑝𝐽)𝑃)𝑅(𝑁(*𝑝𝐽)𝑄))
421, 3, 5om1plusg 22737 . . . . 5 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (*𝑝𝐽) = (+g𝑂))
43 pi1cpbl.a . . . . 5 + = (+g𝑂)
4442, 43syl6eqr 2678 . . . 4 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (*𝑝𝐽) = + )
4544oveqd 6622 . . 3 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀(*𝑝𝐽)𝑃) = (𝑀 + 𝑃))
4644oveqd 6622 . . 3 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑁(*𝑝𝐽)𝑄) = (𝑁 + 𝑄))
4741, 45, 463brtr3d 4649 . 2 ((𝜑 ∧ (𝑀𝑅𝑁𝑃𝑅𝑄)) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄))
4847ex 450 1 (𝜑 → ((𝑀𝑅𝑁𝑃𝑅𝑄) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1992  cin 3559   cuni 4407   class class class wbr 4618   × cxp 5077  cfv 5850  (class class class)co 6605  0cc0 9881  1c1 9882  Basecbs 15776  +gcplusg 15857  TopOnctopon 20613   Cn ccn 20933  IIcii 22581  phcphtpc 22671  *𝑝cpco 22703   Ω1 comi 22704   π1 cpi1 22706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-mulf 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-ec 7690  df-qs 7694  df-map 7805  df-ixp 7854  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-fi 8262  df-sup 8293  df-inf 8294  df-oi 8360  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12118  df-icc 12121  df-fz 12266  df-fzo 12404  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-sca 15873  df-vsca 15874  df-ip 15875  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-hom 15882  df-cco 15883  df-rest 15999  df-topn 16000  df-0g 16018  df-gsum 16019  df-topgen 16020  df-pt 16021  df-prds 16024  df-xrs 16078  df-qtop 16083  df-imas 16084  df-qus 16085  df-xps 16086  df-mre 16162  df-mrc 16163  df-acs 16165  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-submnd 17252  df-mulg 17457  df-cntz 17666  df-cmn 18111  df-psmet 19652  df-xmet 19653  df-met 19654  df-bl 19655  df-mopn 19656  df-cnfld 19661  df-top 20616  df-bases 20617  df-topon 20618  df-topsp 20619  df-cld 20728  df-cn 20936  df-cnp 20937  df-tx 21270  df-hmeo 21463  df-xms 22030  df-ms 22031  df-tms 22032  df-ii 22583  df-htpy 22672  df-phtpy 22673  df-phtpc 22694  df-pco 22708  df-om1 22709  df-pi1 22711
This theorem is referenced by:  pi1addf  22750  pi1addval  22751  pi1grplem  22752
  Copyright terms: Public domain W3C validator