MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1grplem Structured version   Visualization version   GIF version

Theorem pi1grplem 22789
Description: Lemma for pi1grp 22790. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Aug-2015.)
Hypotheses
Ref Expression
pi1fval.g 𝐺 = (𝐽 π1 𝑌)
pi1fval.b 𝐵 = (Base‘𝐺)
pi1fval.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1fval.4 (𝜑𝑌𝑋)
pi1grplem.z 0 = ((0[,]1) × {𝑌})
Assertion
Ref Expression
pi1grplem (𝜑 → (𝐺 ∈ Grp ∧ [ 0 ]( ≃ph𝐽) = (0g𝐺)))

Proof of Theorem pi1grplem
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1fval.g . . . . 5 𝐺 = (𝐽 π1 𝑌)
2 pi1fval.3 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 pi1fval.4 . . . . 5 (𝜑𝑌𝑋)
4 eqid 2621 . . . . 5 (𝐽 Ω1 𝑌) = (𝐽 Ω1 𝑌)
51, 2, 3, 4pi1val 22777 . . . 4 (𝜑𝐺 = ((𝐽 Ω1 𝑌) /s ( ≃ph𝐽)))
6 pi1fval.b . . . . . 6 𝐵 = (Base‘𝐺)
76a1i 11 . . . . 5 (𝜑𝐵 = (Base‘𝐺))
8 eqidd 2622 . . . . 5 (𝜑 → (Base‘(𝐽 Ω1 𝑌)) = (Base‘(𝐽 Ω1 𝑌)))
91, 2, 3, 4, 7, 8pi1buni 22780 . . . 4 (𝜑 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
10 fvexd 6170 . . . 4 (𝜑 → ( ≃ph𝐽) ∈ V)
11 ovexd 6645 . . . 4 (𝜑 → (𝐽 Ω1 𝑌) ∈ V)
121, 2, 3, 4, 7, 9pi1blem 22779 . . . . 5 (𝜑 → ((( ≃ph𝐽) “ 𝐵) ⊆ 𝐵 𝐵 ⊆ (II Cn 𝐽)))
1312simpld 475 . . . 4 (𝜑 → (( ≃ph𝐽) “ 𝐵) ⊆ 𝐵)
145, 9, 10, 11, 13qusin 16144 . . 3 (𝜑𝐺 = ((𝐽 Ω1 𝑌) /s (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))))
154, 2, 3om1plusg 22774 . . 3 (𝜑 → (*𝑝𝐽) = (+g‘(𝐽 Ω1 𝑌)))
16 phtpcer 22734 . . . . 5 ( ≃ph𝐽) Er (II Cn 𝐽)
1716a1i 11 . . . 4 (𝜑 → ( ≃ph𝐽) Er (II Cn 𝐽))
1812simprd 479 . . . 4 (𝜑 𝐵 ⊆ (II Cn 𝐽))
1917, 18erinxp 7781 . . 3 (𝜑 → (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) Er 𝐵)
20 eqid 2621 . . . . 5 (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))
21 eqid 2621 . . . . 5 (+g‘(𝐽 Ω1 𝑌)) = (+g‘(𝐽 Ω1 𝑌))
221, 2, 3, 7, 20, 4, 21pi1cpbl 22784 . . . 4 (𝜑 → ((𝑎(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑐𝑏(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑑) → (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(+g‘(𝐽 Ω1 𝑌))𝑑)))
2315oveqd 6632 . . . . 5 (𝜑 → (𝑎(*𝑝𝐽)𝑏) = (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏))
2415oveqd 6632 . . . . 5 (𝜑 → (𝑐(*𝑝𝐽)𝑑) = (𝑐(+g‘(𝐽 Ω1 𝑌))𝑑))
2523, 24breq12d 4636 . . . 4 (𝜑 → ((𝑎(*𝑝𝐽)𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(*𝑝𝐽)𝑑) ↔ (𝑎(+g‘(𝐽 Ω1 𝑌))𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(+g‘(𝐽 Ω1 𝑌))𝑑)))
2622, 25sylibrd 249 . . 3 (𝜑 → ((𝑎(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑐𝑏(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑑) → (𝑎(*𝑝𝐽)𝑏)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑐(*𝑝𝐽)𝑑)))
2723ad2ant1 1080 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝐽 ∈ (TopOn‘𝑋))
2833ad2ant1 1080 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝑌𝑋)
2993ad2ant1 1080 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
30 simp2 1060 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝑥 𝐵)
31 simp3 1061 . . . 4 ((𝜑𝑥 𝐵𝑦 𝐵) → 𝑦 𝐵)
324, 27, 28, 29, 30, 31om1addcl 22773 . . 3 ((𝜑𝑥 𝐵𝑦 𝐵) → (𝑥(*𝑝𝐽)𝑦) ∈ 𝐵)
332adantr 481 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝐽 ∈ (TopOn‘𝑋))
343adantr 481 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑌𝑋)
359adantr 481 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
36323adant3r3 1273 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥(*𝑝𝐽)𝑦) ∈ 𝐵)
37 simpr3 1067 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑧 𝐵)
384, 33, 34, 35, 36, 37om1addcl 22773 . . . 4 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → ((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧) ∈ 𝐵)
39 simpr1 1065 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑥 𝐵)
40 simpr2 1066 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑦 𝐵)
414, 33, 34, 35, 40, 37om1addcl 22773 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦(*𝑝𝐽)𝑧) ∈ 𝐵)
424, 33, 34, 35, 39, 41om1addcl 22773 . . . 4 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)) ∈ 𝐵)
431, 2, 3, 7pi1eluni 22782 . . . . . . . 8 (𝜑 → (𝑥 𝐵 ↔ (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌)))
4443biimpa 501 . . . . . . 7 ((𝜑𝑥 𝐵) → (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌))
45443ad2antr1 1224 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌 ∧ (𝑥‘1) = 𝑌))
4645simp1d 1071 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑥 ∈ (II Cn 𝐽))
476a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝐵 = (Base‘𝐺))
481, 33, 34, 47pi1eluni 22782 . . . . . . 7 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦 𝐵 ↔ (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌)))
4940, 48mpbid 222 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦 ∈ (II Cn 𝐽) ∧ (𝑦‘0) = 𝑌 ∧ (𝑦‘1) = 𝑌))
5049simp1d 1071 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑦 ∈ (II Cn 𝐽))
511, 33, 34, 47pi1eluni 22782 . . . . . . 7 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑧 𝐵 ↔ (𝑧 ∈ (II Cn 𝐽) ∧ (𝑧‘0) = 𝑌 ∧ (𝑧‘1) = 𝑌)))
5237, 51mpbid 222 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑧 ∈ (II Cn 𝐽) ∧ (𝑧‘0) = 𝑌 ∧ (𝑧‘1) = 𝑌))
5352simp1d 1071 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → 𝑧 ∈ (II Cn 𝐽))
5445simp3d 1073 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥‘1) = 𝑌)
5549simp2d 1072 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦‘0) = 𝑌)
5654, 55eqtr4d 2658 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑥‘1) = (𝑦‘0))
5749simp3d 1073 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦‘1) = 𝑌)
5852simp2d 1072 . . . . . 6 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑧‘0) = 𝑌)
5957, 58eqtr4d 2658 . . . . 5 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → (𝑦‘1) = (𝑧‘0))
60 eqid 2621 . . . . 5 (𝑢 ∈ (0[,]1) ↦ if(𝑢 ≤ (1 / 2), if(𝑢 ≤ (1 / 4), (2 · 𝑢), (𝑢 + (1 / 4))), ((𝑢 / 2) + (1 / 2)))) = (𝑢 ∈ (0[,]1) ↦ if(𝑢 ≤ (1 / 2), if(𝑢 ≤ (1 / 4), (2 · 𝑢), (𝑢 + (1 / 4))), ((𝑢 / 2) + (1 / 2))))
6146, 50, 53, 56, 59, 60pcoass 22764 . . . 4 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → ((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧)( ≃ph𝐽)(𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)))
62 brinxp2 5151 . . . 4 (((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)) ↔ (((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧) ∈ 𝐵 ∧ (𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)) ∈ 𝐵 ∧ ((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧)( ≃ph𝐽)(𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧))))
6338, 42, 61, 62syl3anbrc 1244 . . 3 ((𝜑 ∧ (𝑥 𝐵𝑦 𝐵𝑧 𝐵)) → ((𝑥(*𝑝𝐽)𝑦)(*𝑝𝐽)𝑧)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))(𝑥(*𝑝𝐽)(𝑦(*𝑝𝐽)𝑧)))
64 pi1grplem.z . . . . . 6 0 = ((0[,]1) × {𝑌})
6564pcoptcl 22761 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → ( 0 ∈ (II Cn 𝐽) ∧ ( 0 ‘0) = 𝑌 ∧ ( 0 ‘1) = 𝑌))
662, 3, 65syl2anc 692 . . . 4 (𝜑 → ( 0 ∈ (II Cn 𝐽) ∧ ( 0 ‘0) = 𝑌 ∧ ( 0 ‘1) = 𝑌))
671, 2, 3, 7pi1eluni 22782 . . . 4 (𝜑 → ( 0 𝐵 ↔ ( 0 ∈ (II Cn 𝐽) ∧ ( 0 ‘0) = 𝑌 ∧ ( 0 ‘1) = 𝑌)))
6866, 67mpbird 247 . . 3 (𝜑0 𝐵)
692adantr 481 . . . . 5 ((𝜑𝑥 𝐵) → 𝐽 ∈ (TopOn‘𝑋))
703adantr 481 . . . . 5 ((𝜑𝑥 𝐵) → 𝑌𝑋)
719adantr 481 . . . . 5 ((𝜑𝑥 𝐵) → 𝐵 = (Base‘(𝐽 Ω1 𝑌)))
7268adantr 481 . . . . 5 ((𝜑𝑥 𝐵) → 0 𝐵)
73 simpr 477 . . . . 5 ((𝜑𝑥 𝐵) → 𝑥 𝐵)
744, 69, 70, 71, 72, 73om1addcl 22773 . . . 4 ((𝜑𝑥 𝐵) → ( 0 (*𝑝𝐽)𝑥) ∈ 𝐵)
7518sselda 3588 . . . . 5 ((𝜑𝑥 𝐵) → 𝑥 ∈ (II Cn 𝐽))
7644simp2d 1072 . . . . 5 ((𝜑𝑥 𝐵) → (𝑥‘0) = 𝑌)
7764pcopt 22762 . . . . 5 ((𝑥 ∈ (II Cn 𝐽) ∧ (𝑥‘0) = 𝑌) → ( 0 (*𝑝𝐽)𝑥)( ≃ph𝐽)𝑥)
7875, 76, 77syl2anc 692 . . . 4 ((𝜑𝑥 𝐵) → ( 0 (*𝑝𝐽)𝑥)( ≃ph𝐽)𝑥)
79 brinxp2 5151 . . . 4 (( 0 (*𝑝𝐽)𝑥)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑥 ↔ (( 0 (*𝑝𝐽)𝑥) ∈ 𝐵𝑥 𝐵 ∧ ( 0 (*𝑝𝐽)𝑥)( ≃ph𝐽)𝑥))
8074, 73, 78, 79syl3anbrc 1244 . . 3 ((𝜑𝑥 𝐵) → ( 0 (*𝑝𝐽)𝑥)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵))𝑥)
81 eqid 2621 . . . . . . 7 (𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) = (𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))
8281pcorevcl 22765 . . . . . 6 (𝑥 ∈ (II Cn 𝐽) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = (𝑥‘1) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = (𝑥‘0)))
8375, 82syl 17 . . . . 5 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = (𝑥‘1) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = (𝑥‘0)))
8483simp1d 1071 . . . 4 ((𝜑𝑥 𝐵) → (𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽))
8583simp2d 1072 . . . . 5 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = (𝑥‘1))
8644simp3d 1073 . . . . 5 ((𝜑𝑥 𝐵) → (𝑥‘1) = 𝑌)
8785, 86eqtrd 2655 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = 𝑌)
8883simp3d 1073 . . . . 5 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = (𝑥‘0))
8988, 76eqtrd 2655 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = 𝑌)
901, 2, 3, 7pi1eluni 22782 . . . . 5 (𝜑 → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ 𝐵 ↔ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = 𝑌 ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = 𝑌)))
9190adantr 481 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ 𝐵 ↔ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ (II Cn 𝐽) ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘0) = 𝑌 ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))‘1) = 𝑌)))
9284, 87, 89, 91mpbir3and 1243 . . 3 ((𝜑𝑥 𝐵) → (𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎))) ∈ 𝐵)
934, 69, 70, 71, 92, 73om1addcl 22773 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥) ∈ 𝐵)
94 eqid 2621 . . . . . . 7 ((0[,]1) × {(𝑥‘1)}) = ((0[,]1) × {(𝑥‘1)})
9581, 94pcorev 22767 . . . . . 6 (𝑥 ∈ (II Cn 𝐽) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)( ≃ph𝐽)((0[,]1) × {(𝑥‘1)}))
9675, 95syl 17 . . . . 5 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)( ≃ph𝐽)((0[,]1) × {(𝑥‘1)}))
9786sneqd 4167 . . . . . . 7 ((𝜑𝑥 𝐵) → {(𝑥‘1)} = {𝑌})
9897xpeq2d 5109 . . . . . 6 ((𝜑𝑥 𝐵) → ((0[,]1) × {(𝑥‘1)}) = ((0[,]1) × {𝑌}))
9998, 64syl6reqr 2674 . . . . 5 ((𝜑𝑥 𝐵) → 0 = ((0[,]1) × {(𝑥‘1)}))
10096, 99breqtrrd 4651 . . . 4 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)( ≃ph𝐽) 0 )
101 brinxp2 5151 . . . 4 (((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) 0 ↔ (((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥) ∈ 𝐵0 𝐵 ∧ ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)( ≃ph𝐽) 0 ))
10293, 72, 100, 101syl3anbrc 1244 . . 3 ((𝜑𝑥 𝐵) → ((𝑎 ∈ (0[,]1) ↦ (𝑥‘(1 − 𝑎)))(*𝑝𝐽)𝑥)(( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) 0 )
10314, 9, 15, 19, 11, 26, 32, 63, 68, 80, 92, 102qusgrp2 17473 . 2 (𝜑 → (𝐺 ∈ Grp ∧ [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (0g𝐺)))
104 ecinxp 7782 . . . . 5 (((( ≃ph𝐽) “ 𝐵) ⊆ 𝐵0 𝐵) → [ 0 ]( ≃ph𝐽) = [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
10513, 68, 104syl2anc 692 . . . 4 (𝜑 → [ 0 ]( ≃ph𝐽) = [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)))
106105eqeq1d 2623 . . 3 (𝜑 → ([ 0 ]( ≃ph𝐽) = (0g𝐺) ↔ [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (0g𝐺)))
107106anbi2d 739 . 2 (𝜑 → ((𝐺 ∈ Grp ∧ [ 0 ]( ≃ph𝐽) = (0g𝐺)) ↔ (𝐺 ∈ Grp ∧ [ 0 ](( ≃ph𝐽) ∩ ( 𝐵 × 𝐵)) = (0g𝐺))))
108103, 107mpbird 247 1 (𝜑 → (𝐺 ∈ Grp ∧ [ 0 ]( ≃ph𝐽) = (0g𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3190  cin 3559  wss 3560  ifcif 4064  {csn 4155   cuni 4409   class class class wbr 4623  cmpt 4683   × cxp 5082  cima 5087  cfv 5857  (class class class)co 6615   Er wer 7699  [cec 7700  0cc0 9896  1c1 9897   + caddc 9899   · cmul 9901  cle 10035  cmin 10226   / cdiv 10644  2c2 11030  4c4 11032  [,]cicc 12136  Basecbs 15800  +gcplusg 15881  0gc0g 16040  Grpcgrp 17362  TopOnctopon 20655   Cn ccn 20968  IIcii 22618  phcphtpc 22708  *𝑝cpco 22740   Ω1 comi 22741   π1 cpi1 22743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-ec 7704  df-qs 7708  df-map 7819  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-fi 8277  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ioo 12137  df-icc 12140  df-fz 12285  df-fzo 12423  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-hom 15906  df-cco 15907  df-rest 16023  df-topn 16024  df-0g 16042  df-gsum 16043  df-topgen 16044  df-pt 16045  df-prds 16048  df-xrs 16102  df-qtop 16107  df-imas 16108  df-qus 16109  df-xps 16110  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-grp 17365  df-mulg 17481  df-cntz 17690  df-cmn 18135  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-cnfld 19687  df-top 20639  df-topon 20656  df-topsp 20677  df-bases 20690  df-cld 20763  df-cn 20971  df-cnp 20972  df-tx 21305  df-hmeo 21498  df-xms 22065  df-ms 22066  df-tms 22067  df-ii 22620  df-htpy 22709  df-phtpy 22710  df-phtpc 22731  df-pco 22745  df-om1 22746  df-pi1 22748
This theorem is referenced by:  pi1grp  22790  pi1id  22791  pi1inv  22792
  Copyright terms: Public domain W3C validator