Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimincfltioc Structured version   Visualization version   GIF version

Theorem pimincfltioc 40263
Description: Given a non decreasing function, the preimage of an unbounded below, open interval, when the supremum of the preimage belongs to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimincfltioc.x 𝑥𝜑
pimincfltioc.h 𝑦𝜑
pimincfltioc.a (𝜑𝐴 ⊆ ℝ)
pimincfltioc.f (𝜑𝐹:𝐴⟶ℝ*)
pimincfltioc.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
pimincfltioc.r (𝜑𝑅 ∈ ℝ*)
pimincfltioc.y 𝑌 = {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
pimincfltioc.c 𝑆 = sup(𝑌, ℝ*, < )
pimincfltioc.e (𝜑𝑆𝑌)
pimincfltioc.d 𝐼 = (-∞(,]𝑆)
Assertion
Ref Expression
pimincfltioc (𝜑𝑌 = (𝐼𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem pimincfltioc
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pimincfltioc.y . . . . . . 7 𝑌 = {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
2 ssrab2 3672 . . . . . . 7 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅} ⊆ 𝐴
31, 2eqsstri 3620 . . . . . 6 𝑌𝐴
43a1i 11 . . . . 5 (𝜑𝑌𝐴)
5 pimincfltioc.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
64, 5sstrd 3598 . . . 4 (𝜑𝑌 ⊆ ℝ)
7 pimincfltioc.c . . . 4 𝑆 = sup(𝑌, ℝ*, < )
8 pimincfltioc.e . . . 4 (𝜑𝑆𝑌)
9 pimincfltioc.d . . . 4 𝐼 = (-∞(,]𝑆)
106, 7, 8, 9ressiocsup 39227 . . 3 (𝜑𝑌𝐼)
1110, 4ssind 3821 . 2 (𝜑𝑌 ⊆ (𝐼𝐴))
12 pimincfltioc.x . . . 4 𝑥𝜑
13 elinel2 3784 . . . . . . . 8 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐴)
1413adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝐴)
15 pimincfltioc.f . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ℝ*)
1615adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝐹:𝐴⟶ℝ*)
1716, 14ffvelrnd 6326 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ∈ ℝ*)
183, 8sseldi 3586 . . . . . . . . . 10 (𝜑𝑆𝐴)
1915, 18ffvelrnd 6326 . . . . . . . . 9 (𝜑 → (𝐹𝑆) ∈ ℝ*)
2019adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑆) ∈ ℝ*)
21 pimincfltioc.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
2221adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 ∈ ℝ*)
23 eleq1 2686 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑧 ∈ (𝐼𝐴) ↔ 𝑥 ∈ (𝐼𝐴)))
2423anbi2d 739 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝜑𝑧 ∈ (𝐼𝐴)) ↔ (𝜑𝑥 ∈ (𝐼𝐴))))
25 fveq2 6158 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
2625breq1d 4633 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝐹𝑧) ≤ (𝐹𝑆) ↔ (𝐹𝑥) ≤ (𝐹𝑆)))
2724, 26imbi12d 334 . . . . . . . . 9 (𝑧 = 𝑥 → (((𝜑𝑧 ∈ (𝐼𝐴)) → (𝐹𝑧) ≤ (𝐹𝑆)) ↔ ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ≤ (𝐹𝑆))))
28 nfv 1840 . . . . . . . . . . 11 𝑥 𝑧 ∈ (𝐼𝐴)
2912, 28nfan 1825 . . . . . . . . . 10 𝑥(𝜑𝑧 ∈ (𝐼𝐴))
30 pimincfltioc.h . . . . . . . . . . 11 𝑦𝜑
31 nfv 1840 . . . . . . . . . . 11 𝑦 𝑧 ∈ (𝐼𝐴)
3230, 31nfan 1825 . . . . . . . . . 10 𝑦(𝜑𝑧 ∈ (𝐼𝐴))
33 pimincfltioc.i . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
3433adantr 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼𝐴)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
35 elinel2 3784 . . . . . . . . . . 11 (𝑧 ∈ (𝐼𝐴) → 𝑧𝐴)
3635adantl 482 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑧𝐴)
3718adantr 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑆𝐴)
38 mnfxr 10056 . . . . . . . . . . . 12 -∞ ∈ ℝ*
3938a1i 11 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐼𝐴)) → -∞ ∈ ℝ*)
40 ressxr 10043 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
416, 8sseldd 3589 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℝ)
4240, 41sseldi 3586 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℝ*)
4342adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑆 ∈ ℝ*)
44 elinel1 3783 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐼𝐴) → 𝑧𝐼)
4544, 9syl6eleq 2708 . . . . . . . . . . . 12 (𝑧 ∈ (𝐼𝐴) → 𝑧 ∈ (-∞(,]𝑆))
4645adantl 482 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑧 ∈ (-∞(,]𝑆))
47 iocleub 39171 . . . . . . . . . . 11 ((-∞ ∈ ℝ*𝑆 ∈ ℝ*𝑧 ∈ (-∞(,]𝑆)) → 𝑧𝑆)
4839, 43, 46, 47syl3anc 1323 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑧𝑆)
4929, 32, 34, 36, 37, 48dmrelrnrel 38928 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐼𝐴)) → (𝐹𝑧) ≤ (𝐹𝑆))
5027, 49chvarv 2262 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ≤ (𝐹𝑆))
51 fveq2 6158 . . . . . . . . . . . . 13 (𝑥 = 𝑆 → (𝐹𝑥) = (𝐹𝑆))
5251breq1d 4633 . . . . . . . . . . . 12 (𝑥 = 𝑆 → ((𝐹𝑥) < 𝑅 ↔ (𝐹𝑆) < 𝑅))
5352, 1elrab2 3353 . . . . . . . . . . 11 (𝑆𝑌 ↔ (𝑆𝐴 ∧ (𝐹𝑆) < 𝑅))
548, 53sylib 208 . . . . . . . . . 10 (𝜑 → (𝑆𝐴 ∧ (𝐹𝑆) < 𝑅))
5554simprd 479 . . . . . . . . 9 (𝜑 → (𝐹𝑆) < 𝑅)
5655adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑆) < 𝑅)
5717, 20, 22, 50, 56xrlelttrd 11951 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) < 𝑅)
5814, 57jca 554 . . . . . 6 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝑥𝐴 ∧ (𝐹𝑥) < 𝑅))
591rabeq2i 3187 . . . . . 6 (𝑥𝑌 ↔ (𝑥𝐴 ∧ (𝐹𝑥) < 𝑅))
6058, 59sylibr 224 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝑌)
6160ex 450 . . . 4 (𝜑 → (𝑥 ∈ (𝐼𝐴) → 𝑥𝑌))
6212, 61ralrimi 2953 . . 3 (𝜑 → ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
6328nfci 2751 . . . 4 𝑥(𝐼𝐴)
64 nfrab1 3115 . . . . 5 𝑥{𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
651, 64nfcxfr 2759 . . . 4 𝑥𝑌
6663, 65dfss3f 3580 . . 3 ((𝐼𝐴) ⊆ 𝑌 ↔ ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
6762, 66sylibr 224 . 2 (𝜑 → (𝐼𝐴) ⊆ 𝑌)
6811, 67eqssd 3605 1 (𝜑𝑌 = (𝐼𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wnf 1705  wcel 1987  wral 2908  {crab 2912  cin 3559  wss 3560   class class class wbr 4623  wf 5853  cfv 5857  (class class class)co 6615  supcsup 8306  cr 9895  -∞cmnf 10032  *cxr 10033   < clt 10034  cle 10035  (,]cioc 12134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-po 5005  df-so 5006  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-sup 8308  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-ioc 12138
This theorem is referenced by:  incsmflem  40287
  Copyright terms: Public domain W3C validator