Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimltmnf2 Structured version   Visualization version   GIF version

Theorem pimltmnf2 42973
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound -∞, is the empty set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimltmnf2.1 𝑥𝐹
pimltmnf2.2 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
pimltmnf2 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < -∞} = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem pimltmnf2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2977 . . . 4 𝑥𝐴
2 nfcv 2977 . . . 4 𝑦𝐴
3 nfv 1911 . . . 4 𝑦(𝐹𝑥) < -∞
4 pimltmnf2.1 . . . . . 6 𝑥𝐹
5 nfcv 2977 . . . . . 6 𝑥𝑦
64, 5nffv 6674 . . . . 5 𝑥(𝐹𝑦)
7 nfcv 2977 . . . . 5 𝑥 <
8 nfcv 2977 . . . . 5 𝑥-∞
96, 7, 8nfbr 5105 . . . 4 𝑥(𝐹𝑦) < -∞
10 fveq2 6664 . . . . 5 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1110breq1d 5068 . . . 4 (𝑥 = 𝑦 → ((𝐹𝑥) < -∞ ↔ (𝐹𝑦) < -∞))
121, 2, 3, 9, 11cbvrabw 3489 . . 3 {𝑥𝐴 ∣ (𝐹𝑥) < -∞} = {𝑦𝐴 ∣ (𝐹𝑦) < -∞}
1312a1i 11 . 2 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < -∞} = {𝑦𝐴 ∣ (𝐹𝑦) < -∞})
14 mnfxr 10692 . . . . . . 7 -∞ ∈ ℝ*
1514a1i 11 . . . . . 6 ((𝜑𝑦𝐴) → -∞ ∈ ℝ*)
16 pimltmnf2.2 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℝ)
1716ffvelrnda 6845 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
1817rexrd 10685 . . . . . 6 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ*)
1917mnfltd 12513 . . . . . 6 ((𝜑𝑦𝐴) → -∞ < (𝐹𝑦))
2015, 18, 19xrltled 12537 . . . . 5 ((𝜑𝑦𝐴) → -∞ ≤ (𝐹𝑦))
2115, 18xrlenltd 10701 . . . . 5 ((𝜑𝑦𝐴) → (-∞ ≤ (𝐹𝑦) ↔ ¬ (𝐹𝑦) < -∞))
2220, 21mpbid 234 . . . 4 ((𝜑𝑦𝐴) → ¬ (𝐹𝑦) < -∞)
2322ralrimiva 3182 . . 3 (𝜑 → ∀𝑦𝐴 ¬ (𝐹𝑦) < -∞)
24 rabeq0 4337 . . 3 ({𝑦𝐴 ∣ (𝐹𝑦) < -∞} = ∅ ↔ ∀𝑦𝐴 ¬ (𝐹𝑦) < -∞)
2523, 24sylibr 236 . 2 (𝜑 → {𝑦𝐴 ∣ (𝐹𝑦) < -∞} = ∅)
2613, 25eqtrd 2856 1 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < -∞} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  wnfc 2961  wral 3138  {crab 3142  c0 4290   class class class wbr 5058  wf 6345  cfv 6349  cr 10530  -∞cmnf 10667  *cxr 10668   < clt 10669  cle 10670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-pre-lttri 10605  ax-pre-lttrn 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675
This theorem is referenced by:  smfpimltxr  43018
  Copyright terms: Public domain W3C validator