MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1ghm Structured version   Visualization version   GIF version

Theorem pj1ghm 18832
Description: The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
pj1f.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1ghm (𝜑 → (𝑇𝑃𝑈) ∈ ((𝐺s (𝑇 𝑈)) GrpHom 𝐺))

Proof of Theorem pj1ghm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . 2 (Base‘(𝐺s (𝑇 𝑈))) = (Base‘(𝐺s (𝑇 𝑈)))
2 eqid 2824 . 2 (Base‘𝐺) = (Base‘𝐺)
3 ovex 7192 . . 3 (𝑇 𝑈) ∈ V
4 eqid 2824 . . . 4 (𝐺s (𝑇 𝑈)) = (𝐺s (𝑇 𝑈))
5 pj1eu.a . . . 4 + = (+g𝐺)
64, 5ressplusg 16615 . . 3 ((𝑇 𝑈) ∈ V → + = (+g‘(𝐺s (𝑇 𝑈))))
73, 6ax-mp 5 . 2 + = (+g‘(𝐺s (𝑇 𝑈)))
8 pj1eu.2 . . . 4 (𝜑𝑇 ∈ (SubGrp‘𝐺))
9 pj1eu.3 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
10 pj1eu.5 . . . 4 (𝜑𝑇 ⊆ (𝑍𝑈))
11 pj1eu.s . . . . 5 = (LSSum‘𝐺)
12 pj1eu.z . . . . 5 𝑍 = (Cntz‘𝐺)
1311, 12lsmsubg 18782 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubGrp‘𝐺))
148, 9, 10, 13syl3anc 1367 . . 3 (𝜑 → (𝑇 𝑈) ∈ (SubGrp‘𝐺))
154subggrp 18285 . . 3 ((𝑇 𝑈) ∈ (SubGrp‘𝐺) → (𝐺s (𝑇 𝑈)) ∈ Grp)
1614, 15syl 17 . 2 (𝜑 → (𝐺s (𝑇 𝑈)) ∈ Grp)
17 subgrcl 18287 . . 3 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
188, 17syl 17 . 2 (𝜑𝐺 ∈ Grp)
19 pj1eu.o . . . . 5 0 = (0g𝐺)
20 pj1eu.4 . . . . 5 (𝜑 → (𝑇𝑈) = { 0 })
21 pj1f.p . . . . 5 𝑃 = (proj1𝐺)
225, 11, 19, 12, 8, 9, 20, 10, 21pj1f 18826 . . . 4 (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
232subgss 18283 . . . . 5 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
248, 23syl 17 . . . 4 (𝜑𝑇 ⊆ (Base‘𝐺))
2522, 24fssd 6531 . . 3 (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶(Base‘𝐺))
264subgbas 18286 . . . . 5 ((𝑇 𝑈) ∈ (SubGrp‘𝐺) → (𝑇 𝑈) = (Base‘(𝐺s (𝑇 𝑈))))
2714, 26syl 17 . . . 4 (𝜑 → (𝑇 𝑈) = (Base‘(𝐺s (𝑇 𝑈))))
2827feq2d 6503 . . 3 (𝜑 → ((𝑇𝑃𝑈):(𝑇 𝑈)⟶(Base‘𝐺) ↔ (𝑇𝑃𝑈):(Base‘(𝐺s (𝑇 𝑈)))⟶(Base‘𝐺)))
2925, 28mpbid 234 . 2 (𝜑 → (𝑇𝑃𝑈):(Base‘(𝐺s (𝑇 𝑈)))⟶(Base‘𝐺))
3027eleq2d 2901 . . . . 5 (𝜑 → (𝑥 ∈ (𝑇 𝑈) ↔ 𝑥 ∈ (Base‘(𝐺s (𝑇 𝑈)))))
3127eleq2d 2901 . . . . 5 (𝜑 → (𝑦 ∈ (𝑇 𝑈) ↔ 𝑦 ∈ (Base‘(𝐺s (𝑇 𝑈)))))
3230, 31anbi12d 632 . . . 4 (𝜑 → ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) ↔ (𝑥 ∈ (Base‘(𝐺s (𝑇 𝑈))) ∧ 𝑦 ∈ (Base‘(𝐺s (𝑇 𝑈))))))
3332biimpar 480 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐺s (𝑇 𝑈))) ∧ 𝑦 ∈ (Base‘(𝐺s (𝑇 𝑈))))) → (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)))
345, 11, 19, 12, 8, 9, 20, 10, 21pj1id 18828 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑇 𝑈)) → 𝑥 = (((𝑇𝑃𝑈)‘𝑥) + ((𝑈𝑃𝑇)‘𝑥)))
3534adantrr 715 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑥 = (((𝑇𝑃𝑈)‘𝑥) + ((𝑈𝑃𝑇)‘𝑥)))
365, 11, 19, 12, 8, 9, 20, 10, 21pj1id 18828 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑇 𝑈)) → 𝑦 = (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑦)))
3736adantrl 714 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑦 = (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑦)))
3835, 37oveq12d 7177 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥 + 𝑦) = ((((𝑇𝑃𝑈)‘𝑥) + ((𝑈𝑃𝑇)‘𝑥)) + (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑦))))
398adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ∈ (SubGrp‘𝐺))
40 grpmnd 18113 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
4139, 17, 403syl 18 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝐺 ∈ Mnd)
4239, 23syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ⊆ (Base‘𝐺))
43 simpl 485 . . . . . . . . 9 ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) → 𝑥 ∈ (𝑇 𝑈))
44 ffvelrn 6852 . . . . . . . . 9 (((𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇𝑥 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑥) ∈ 𝑇)
4522, 43, 44syl2an 597 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑥) ∈ 𝑇)
4642, 45sseldd 3971 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑥) ∈ (Base‘𝐺))
47 simpr 487 . . . . . . . . 9 ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) → 𝑦 ∈ (𝑇 𝑈))
48 ffvelrn 6852 . . . . . . . . 9 (((𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇𝑦 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇)
4922, 47, 48syl2an 597 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇)
5042, 49sseldd 3971 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ (Base‘𝐺))
519adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑈 ∈ (SubGrp‘𝐺))
522subgss 18283 . . . . . . . . 9 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
5351, 52syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑈 ⊆ (Base‘𝐺))
545, 11, 19, 12, 8, 9, 20, 10, 21pj2f 18827 . . . . . . . . 9 (𝜑 → (𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈)
55 ffvelrn 6852 . . . . . . . . 9 (((𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈𝑥 ∈ (𝑇 𝑈)) → ((𝑈𝑃𝑇)‘𝑥) ∈ 𝑈)
5654, 43, 55syl2an 597 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑥) ∈ 𝑈)
5753, 56sseldd 3971 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑥) ∈ (Base‘𝐺))
58 ffvelrn 6852 . . . . . . . . 9 (((𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈𝑦 ∈ (𝑇 𝑈)) → ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈)
5954, 47, 58syl2an 597 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈)
6053, 59sseldd 3971 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑦) ∈ (Base‘𝐺))
6110adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ⊆ (𝑍𝑈))
6261, 49sseldd 3971 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ (𝑍𝑈))
635, 12cntzi 18462 . . . . . . . 8 ((((𝑇𝑃𝑈)‘𝑦) ∈ (𝑍𝑈) ∧ ((𝑈𝑃𝑇)‘𝑥) ∈ 𝑈) → (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑥)) = (((𝑈𝑃𝑇)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)))
6462, 56, 63syl2anc 586 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑥)) = (((𝑈𝑃𝑇)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)))
652, 5, 41, 46, 50, 57, 60, 64mnd4g 17928 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) + (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦))) = ((((𝑇𝑃𝑈)‘𝑥) + ((𝑈𝑃𝑇)‘𝑥)) + (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑦))))
6638, 65eqtr4d 2862 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥 + 𝑦) = ((((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) + (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦))))
6720adantr 483 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑇𝑈) = { 0 })
685subgcl 18292 . . . . . . . 8 (((𝑇 𝑈) ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) → (𝑥 + 𝑦) ∈ (𝑇 𝑈))
69683expb 1116 . . . . . . 7 (((𝑇 𝑈) ∈ (SubGrp‘𝐺) ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥 + 𝑦) ∈ (𝑇 𝑈))
7014, 69sylan 582 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥 + 𝑦) ∈ (𝑇 𝑈))
715subgcl 18292 . . . . . . 7 ((𝑇 ∈ (SubGrp‘𝐺) ∧ ((𝑇𝑃𝑈)‘𝑥) ∈ 𝑇 ∧ ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇) → (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) ∈ 𝑇)
7239, 45, 49, 71syl3anc 1367 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) ∈ 𝑇)
735subgcl 18292 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝐺) ∧ ((𝑈𝑃𝑇)‘𝑥) ∈ 𝑈 ∧ ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈) → (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦)) ∈ 𝑈)
7451, 56, 59, 73syl3anc 1367 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦)) ∈ 𝑈)
755, 11, 19, 12, 39, 51, 67, 61, 21, 70, 72, 74pj1eq 18829 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑥 + 𝑦) = ((((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) + (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦))) ↔ (((𝑇𝑃𝑈)‘(𝑥 + 𝑦)) = (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) ∧ ((𝑈𝑃𝑇)‘(𝑥 + 𝑦)) = (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦)))))
7666, 75mpbid 234 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (((𝑇𝑃𝑈)‘(𝑥 + 𝑦)) = (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) ∧ ((𝑈𝑃𝑇)‘(𝑥 + 𝑦)) = (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦))))
7776simpld 497 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘(𝑥 + 𝑦)) = (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)))
7833, 77syldan 593 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐺s (𝑇 𝑈))) ∧ 𝑦 ∈ (Base‘(𝐺s (𝑇 𝑈))))) → ((𝑇𝑃𝑈)‘(𝑥 + 𝑦)) = (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)))
791, 2, 7, 5, 16, 18, 29, 78isghmd 18370 1 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝐺s (𝑇 𝑈)) GrpHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  Vcvv 3497  cin 3938  wss 3939  {csn 4570  wf 6354  cfv 6358  (class class class)co 7159  Basecbs 16486  s cress 16487  +gcplusg 16568  0gc0g 16716  Mndcmnd 17914  Grpcgrp 18106  SubGrpcsubg 18276   GrpHom cghm 18358  Cntzccntz 18448  LSSumclsm 18762  proj1cpj1 18763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-subg 18279  df-ghm 18359  df-cntz 18450  df-lsm 18764  df-pj1 18765
This theorem is referenced by:  pj1ghm2  18833  dpjghm  19188  pj1lmhm  19875
  Copyright terms: Public domain W3C validator