Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1lmhm2 Structured version   Visualization version   GIF version

Theorem pj1lmhm2 19149
 Description: The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1lmhm.l 𝐿 = (LSubSp‘𝑊)
pj1lmhm.s = (LSSum‘𝑊)
pj1lmhm.z 0 = (0g𝑊)
pj1lmhm.p 𝑃 = (proj1𝑊)
pj1lmhm.1 (𝜑𝑊 ∈ LMod)
pj1lmhm.2 (𝜑𝑇𝐿)
pj1lmhm.3 (𝜑𝑈𝐿)
pj1lmhm.4 (𝜑 → (𝑇𝑈) = { 0 })
Assertion
Ref Expression
pj1lmhm2 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom (𝑊s 𝑇)))

Proof of Theorem pj1lmhm2
StepHypRef Expression
1 pj1lmhm.l . . 3 𝐿 = (LSubSp‘𝑊)
2 pj1lmhm.s . . 3 = (LSSum‘𝑊)
3 pj1lmhm.z . . 3 0 = (0g𝑊)
4 pj1lmhm.p . . 3 𝑃 = (proj1𝑊)
5 pj1lmhm.1 . . 3 (𝜑𝑊 ∈ LMod)
6 pj1lmhm.2 . . 3 (𝜑𝑇𝐿)
7 pj1lmhm.3 . . 3 (𝜑𝑈𝐿)
8 pj1lmhm.4 . . 3 (𝜑 → (𝑇𝑈) = { 0 })
91, 2, 3, 4, 5, 6, 7, 8pj1lmhm 19148 . 2 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊))
10 eqid 2651 . . . . 5 (+g𝑊) = (+g𝑊)
11 eqid 2651 . . . . 5 (Cntz‘𝑊) = (Cntz‘𝑊)
121lsssssubg 19006 . . . . . . 7 (𝑊 ∈ LMod → 𝐿 ⊆ (SubGrp‘𝑊))
135, 12syl 17 . . . . . 6 (𝜑𝐿 ⊆ (SubGrp‘𝑊))
1413, 6sseldd 3637 . . . . 5 (𝜑𝑇 ∈ (SubGrp‘𝑊))
1513, 7sseldd 3637 . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝑊))
16 lmodabl 18958 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
175, 16syl 17 . . . . . 6 (𝜑𝑊 ∈ Abel)
1811, 17, 14, 15ablcntzd 18306 . . . . 5 (𝜑𝑇 ⊆ ((Cntz‘𝑊)‘𝑈))
1910, 2, 3, 11, 14, 15, 8, 18, 4pj1f 18156 . . . 4 (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
20 frn 6091 . . . 4 ((𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇 → ran (𝑇𝑃𝑈) ⊆ 𝑇)
2119, 20syl 17 . . 3 (𝜑 → ran (𝑇𝑃𝑈) ⊆ 𝑇)
22 eqid 2651 . . . 4 (𝑊s 𝑇) = (𝑊s 𝑇)
2322, 1reslmhm2b 19102 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝐿 ∧ ran (𝑇𝑃𝑈) ⊆ 𝑇) → ((𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊) ↔ (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom (𝑊s 𝑇))))
245, 6, 21, 23syl3anc 1366 . 2 (𝜑 → ((𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom 𝑊) ↔ (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom (𝑊s 𝑇))))
259, 24mpbid 222 1 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊s (𝑇 𝑈)) LMHom (𝑊s 𝑇)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1523   ∈ wcel 2030   ∩ cin 3606   ⊆ wss 3607  {csn 4210  ran crn 5144  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ↾s cress 15905  +gcplusg 15988  0gc0g 16147  SubGrpcsubg 17635  Cntzccntz 17794  LSSumclsm 18095  proj1cpj1 18096  Abelcabl 18240  LModclmod 18911  LSubSpclss 18980   LMHom clmhm 19067 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-sca 16004  df-vsca 16005  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-subg 17638  df-ghm 17705  df-cntz 17796  df-lsm 18097  df-pj1 18098  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-lmod 18913  df-lss 18981  df-lmhm 19070 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator