![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pj2f | Structured version Visualization version GIF version |
Description: The right projection function maps a direct subspace sum onto the right factor. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
pj1eu.a | ⊢ + = (+g‘𝐺) |
pj1eu.s | ⊢ ⊕ = (LSSum‘𝐺) |
pj1eu.o | ⊢ 0 = (0g‘𝐺) |
pj1eu.z | ⊢ 𝑍 = (Cntz‘𝐺) |
pj1eu.2 | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
pj1eu.3 | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
pj1eu.4 | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
pj1eu.5 | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
pj1f.p | ⊢ 𝑃 = (proj1‘𝐺) |
Ref | Expression |
---|---|
pj2f | ⊢ (𝜑 → (𝑈𝑃𝑇):(𝑇 ⊕ 𝑈)⟶𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pj1eu.a | . . 3 ⊢ + = (+g‘𝐺) | |
2 | pj1eu.s | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
3 | pj1eu.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | pj1eu.z | . . 3 ⊢ 𝑍 = (Cntz‘𝐺) | |
5 | pj1eu.3 | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
6 | pj1eu.2 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
7 | incom 3838 | . . . 4 ⊢ (𝑈 ∩ 𝑇) = (𝑇 ∩ 𝑈) | |
8 | pj1eu.4 | . . . 4 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
9 | 7, 8 | syl5eq 2697 | . . 3 ⊢ (𝜑 → (𝑈 ∩ 𝑇) = { 0 }) |
10 | pj1eu.5 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
11 | 4, 6, 5, 10 | cntzrecd 18137 | . . 3 ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) |
12 | pj1f.p | . . 3 ⊢ 𝑃 = (proj1‘𝐺) | |
13 | 1, 2, 3, 4, 5, 6, 9, 11, 12 | pj1f 18156 | . 2 ⊢ (𝜑 → (𝑈𝑃𝑇):(𝑈 ⊕ 𝑇)⟶𝑈) |
14 | 2, 4 | lsmcom2 18116 | . . . 4 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍‘𝑈)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
15 | 6, 5, 10, 14 | syl3anc 1366 | . . 3 ⊢ (𝜑 → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
16 | 15 | feq2d 6069 | . 2 ⊢ (𝜑 → ((𝑈𝑃𝑇):(𝑇 ⊕ 𝑈)⟶𝑈 ↔ (𝑈𝑃𝑇):(𝑈 ⊕ 𝑇)⟶𝑈)) |
17 | 13, 16 | mpbird 247 | 1 ⊢ (𝜑 → (𝑈𝑃𝑇):(𝑇 ⊕ 𝑈)⟶𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ∩ cin 3606 ⊆ wss 3607 {csn 4210 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 +gcplusg 15988 0gc0g 16147 SubGrpcsubg 17635 Cntzccntz 17794 LSSumclsm 18095 proj1cpj1 18096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-sbg 17474 df-subg 17638 df-cntz 17796 df-lsm 18097 df-pj1 18098 |
This theorem is referenced by: pj1eq 18159 pj1ghm 18162 lsmhash 18164 pj1lmhm 19148 |
Copyright terms: Public domain | W3C validator |