HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pj3si Structured version   Visualization version   GIF version

Theorem pj3si 29346
Description: Stronger projection triplet theorem. (Contributed by NM, 2-Dec-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjadj2co.1 𝐹C
pjadj2co.2 𝐺C
pjadj2co.3 𝐻C
Assertion
Ref Expression
pj3si (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) → (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (proj‘((𝐹𝐺) ∩ 𝐻)))

Proof of Theorem pj3si
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pjadj2co.1 . . . . . . . . . 10 𝐹C
2 pjadj2co.2 . . . . . . . . . 10 𝐺C
3 pjadj2co.3 . . . . . . . . . 10 𝐻C
41, 2, 3pj2cocli 29344 . . . . . . . . 9 (𝑥 ∈ ℋ → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ 𝐹)
54adantl 473 . . . . . . . 8 ((ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺𝑥 ∈ ℋ) → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ 𝐹)
61pjfi 28843 . . . . . . . . . . . . 13 (proj𝐹): ℋ⟶ ℋ
72pjfi 28843 . . . . . . . . . . . . 13 (proj𝐺): ℋ⟶ ℋ
86, 7hocofi 28905 . . . . . . . . . . . 12 ((proj𝐹) ∘ (proj𝐺)): ℋ⟶ ℋ
93pjfi 28843 . . . . . . . . . . . 12 (proj𝐻): ℋ⟶ ℋ
108, 9hocofni 28906 . . . . . . . . . . 11 (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) Fn ℋ
11 fnfvelrn 6507 . . . . . . . . . . 11 (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) Fn ℋ ∧ 𝑥 ∈ ℋ) → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)))
1210, 11mpan 708 . . . . . . . . . 10 (𝑥 ∈ ℋ → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)))
13 ssel 3726 . . . . . . . . . 10 (ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺 → (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ 𝐺))
1412, 13syl5 34 . . . . . . . . 9 (ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺 → (𝑥 ∈ ℋ → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ 𝐺))
1514imp 444 . . . . . . . 8 ((ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺𝑥 ∈ ℋ) → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ 𝐺)
165, 15elind 3929 . . . . . . 7 ((ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺𝑥 ∈ ℋ) → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ (𝐹𝐺))
1716adantll 752 . . . . . 6 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) ∧ 𝑥 ∈ ℋ) → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ (𝐹𝐺))
183, 2, 1pj2cocli 29344 . . . . . . . . 9 (𝑥 ∈ ℋ → ((((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹))‘𝑥) ∈ 𝐻)
19 fveq1 6339 . . . . . . . . . 10 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) = ((((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹))‘𝑥))
2019eleq1d 2812 . . . . . . . . 9 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) → (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ 𝐻 ↔ ((((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹))‘𝑥) ∈ 𝐻))
2118, 20syl5ibr 236 . . . . . . . 8 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) → (𝑥 ∈ ℋ → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ 𝐻))
2221imp 444 . . . . . . 7 (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ 𝑥 ∈ ℋ) → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ 𝐻)
2322adantlr 753 . . . . . 6 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) ∧ 𝑥 ∈ ℋ) → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ 𝐻)
2417, 23elind 3929 . . . . 5 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) ∧ 𝑥 ∈ ℋ) → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ ((𝐹𝐺) ∩ 𝐻))
258, 9hococli 28904 . . . . . . . 8 (𝑥 ∈ ℋ → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ ℋ)
26 hvsubcl 28154 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ ℋ) → (𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)) ∈ ℋ)
2725, 26mpdan 705 . . . . . . 7 (𝑥 ∈ ℋ → (𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)) ∈ ℋ)
2827adantl 473 . . . . . 6 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) ∧ 𝑥 ∈ ℋ) → (𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)) ∈ ℋ)
29 simpl 474 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ((𝐹𝐺) ∩ 𝐻)) → 𝑥 ∈ ℋ)
3025adantr 472 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ((𝐹𝐺) ∩ 𝐻)) → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ ℋ)
311, 2chincli 28599 . . . . . . . . . . . . . . 15 (𝐹𝐺) ∈ C
3231, 3chincli 28599 . . . . . . . . . . . . . 14 ((𝐹𝐺) ∩ 𝐻) ∈ C
3332cheli 28369 . . . . . . . . . . . . 13 (𝑦 ∈ ((𝐹𝐺) ∩ 𝐻) → 𝑦 ∈ ℋ)
3433adantl 473 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ((𝐹𝐺) ∩ 𝐻)) → 𝑦 ∈ ℋ)
3529, 30, 343jca 1403 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ((𝐹𝐺) ∩ 𝐻)) → (𝑥 ∈ ℋ ∧ ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ))
3635adantl 473 . . . . . . . . . 10 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ((𝐹𝐺) ∩ 𝐻))) → (𝑥 ∈ ℋ ∧ ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ))
37 his2sub 28229 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)) ·ih 𝑦) = ((𝑥 ·ih 𝑦) − (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ·ih 𝑦)))
3836, 37syl 17 . . . . . . . . 9 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ((𝐹𝐺) ∩ 𝐻))) → ((𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)) ·ih 𝑦) = ((𝑥 ·ih 𝑦) − (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ·ih 𝑦)))
3919adantr 472 . . . . . . . . . . . 12 (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) = ((((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹))‘𝑥))
4039oveq1d 6816 . . . . . . . . . . 11 (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) → (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ·ih 𝑦) = (((((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹))‘𝑥) ·ih 𝑦))
413, 2, 1pjadj2coi 29343 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹))‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑦)))
4233, 41sylan2 492 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ((𝐹𝐺) ∩ 𝐻)) → (((((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹))‘𝑥) ·ih 𝑦) = (𝑥 ·ih ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑦)))
431, 2, 3pj3lem1 29345 . . . . . . . . . . . . . 14 (𝑦 ∈ ((𝐹𝐺) ∩ 𝐻) → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑦) = 𝑦)
4443oveq2d 6817 . . . . . . . . . . . . 13 (𝑦 ∈ ((𝐹𝐺) ∩ 𝐻) → (𝑥 ·ih ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑦)) = (𝑥 ·ih 𝑦))
4544adantl 473 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ((𝐹𝐺) ∩ 𝐻)) → (𝑥 ·ih ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑦)) = (𝑥 ·ih 𝑦))
4642, 45eqtrd 2782 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ((𝐹𝐺) ∩ 𝐻)) → (((((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹))‘𝑥) ·ih 𝑦) = (𝑥 ·ih 𝑦))
4740, 46sylan9eq 2802 . . . . . . . . . 10 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ((𝐹𝐺) ∩ 𝐻))) → (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ·ih 𝑦) = (𝑥 ·ih 𝑦))
4847oveq1d 6816 . . . . . . . . 9 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ((𝐹𝐺) ∩ 𝐻))) → ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ·ih 𝑦) − (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ·ih 𝑦)) = ((𝑥 ·ih 𝑦) − (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ·ih 𝑦)))
4925, 33anim12i 591 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ((𝐹𝐺) ∩ 𝐻)) → (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ))
5049adantl 473 . . . . . . . . . . 11 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ((𝐹𝐺) ∩ 𝐻))) → (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ))
51 hicl 28217 . . . . . . . . . . 11 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ·ih 𝑦) ∈ ℂ)
5250, 51syl 17 . . . . . . . . . 10 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ((𝐹𝐺) ∩ 𝐻))) → (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ·ih 𝑦) ∈ ℂ)
5352subidd 10543 . . . . . . . . 9 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ((𝐹𝐺) ∩ 𝐻))) → ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ·ih 𝑦) − (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ·ih 𝑦)) = 0)
5438, 48, 533eqtr2d 2788 . . . . . . . 8 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ((𝐹𝐺) ∩ 𝐻))) → ((𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)) ·ih 𝑦) = 0)
5554expr 644 . . . . . . 7 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) ∧ 𝑥 ∈ ℋ) → (𝑦 ∈ ((𝐹𝐺) ∩ 𝐻) → ((𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)) ·ih 𝑦) = 0))
5655ralrimiv 3091 . . . . . 6 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) ∧ 𝑥 ∈ ℋ) → ∀𝑦 ∈ ((𝐹𝐺) ∩ 𝐻)((𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)) ·ih 𝑦) = 0)
5732chshii 28364 . . . . . . 7 ((𝐹𝐺) ∩ 𝐻) ∈ S
58 shocel 28421 . . . . . . 7 (((𝐹𝐺) ∩ 𝐻) ∈ S → ((𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)) ∈ (⊥‘((𝐹𝐺) ∩ 𝐻)) ↔ ((𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)) ∈ ℋ ∧ ∀𝑦 ∈ ((𝐹𝐺) ∩ 𝐻)((𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)) ·ih 𝑦) = 0)))
5957, 58ax-mp 5 . . . . . 6 ((𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)) ∈ (⊥‘((𝐹𝐺) ∩ 𝐻)) ↔ ((𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)) ∈ ℋ ∧ ∀𝑦 ∈ ((𝐹𝐺) ∩ 𝐻)((𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)) ·ih 𝑦) = 0))
6028, 56, 59sylanbrc 701 . . . . 5 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) ∧ 𝑥 ∈ ℋ) → (𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)) ∈ (⊥‘((𝐹𝐺) ∩ 𝐻)))
6132pjvi 28844 . . . . 5 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ ((𝐹𝐺) ∩ 𝐻) ∧ (𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)) ∈ (⊥‘((𝐹𝐺) ∩ 𝐻))) → ((proj‘((𝐹𝐺) ∩ 𝐻))‘(((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) + (𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)))) = ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥))
6224, 60, 61syl2anc 696 . . . 4 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) ∧ 𝑥 ∈ ℋ) → ((proj‘((𝐹𝐺) ∩ 𝐻))‘(((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) + (𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)))) = ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥))
63 id 22 . . . . . . . 8 (𝑥 ∈ ℋ → 𝑥 ∈ ℋ)
64 hvaddsub12 28175 . . . . . . . 8 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ ∧ ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ ℋ) → (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) + (𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥))) = (𝑥 + (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) − ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥))))
6525, 63, 25, 64syl3anc 1463 . . . . . . 7 (𝑥 ∈ ℋ → (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) + (𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥))) = (𝑥 + (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) − ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥))))
66 hvsubid 28163 . . . . . . . . . 10 (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) ∈ ℋ → (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) − ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)) = 0)
6725, 66syl 17 . . . . . . . . 9 (𝑥 ∈ ℋ → (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) − ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)) = 0)
6867oveq2d 6817 . . . . . . . 8 (𝑥 ∈ ℋ → (𝑥 + (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) − ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥))) = (𝑥 + 0))
69 ax-hvaddid 28141 . . . . . . . 8 (𝑥 ∈ ℋ → (𝑥 + 0) = 𝑥)
7068, 69eqtrd 2782 . . . . . . 7 (𝑥 ∈ ℋ → (𝑥 + (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) − ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥))) = 𝑥)
7165, 70eqtrd 2782 . . . . . 6 (𝑥 ∈ ℋ → (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) + (𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥))) = 𝑥)
7271fveq2d 6344 . . . . 5 (𝑥 ∈ ℋ → ((proj‘((𝐹𝐺) ∩ 𝐻))‘(((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) + (𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)))) = ((proj‘((𝐹𝐺) ∩ 𝐻))‘𝑥))
7372adantl 473 . . . 4 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) ∧ 𝑥 ∈ ℋ) → ((proj‘((𝐹𝐺) ∩ 𝐻))‘(((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) + (𝑥 ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥)))) = ((proj‘((𝐹𝐺) ∩ 𝐻))‘𝑥))
7462, 73eqtr3d 2784 . . 3 ((((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) ∧ 𝑥 ∈ ℋ) → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) = ((proj‘((𝐹𝐺) ∩ 𝐻))‘𝑥))
7574ralrimiva 3092 . 2 (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) → ∀𝑥 ∈ ℋ ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) = ((proj‘((𝐹𝐺) ∩ 𝐻))‘𝑥))
768, 9hocofi 28905 . . 3 (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)): ℋ⟶ ℋ
7732pjfi 28843 . . 3 (proj‘((𝐹𝐺) ∩ 𝐻)): ℋ⟶ ℋ
7876, 77hoeqi 28900 . 2 (∀𝑥 ∈ ℋ ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝑥) = ((proj‘((𝐹𝐺) ∩ 𝐻))‘𝑥) ↔ (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (proj‘((𝐹𝐺) ∩ 𝐻)))
7975, 78sylib 208 1 (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) → (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (proj‘((𝐹𝐺) ∩ 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1620  wcel 2127  wral 3038  cin 3702  wss 3703  ran crn 5255  ccom 5258   Fn wfn 6032  cfv 6037  (class class class)co 6801  cc 10097  0cc0 10099  cmin 10429  chil 28056   + cva 28057   ·ih csp 28059  0c0v 28061   cmv 28062   S csh 28065   C cch 28066  cort 28067  projcpjh 28074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cc 9420  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177  ax-addf 10178  ax-mulf 10179  ax-hilex 28136  ax-hfvadd 28137  ax-hvcom 28138  ax-hvass 28139  ax-hv0cl 28140  ax-hvaddid 28141  ax-hfvmul 28142  ax-hvmulid 28143  ax-hvmulass 28144  ax-hvdistr1 28145  ax-hvdistr2 28146  ax-hvmul0 28147  ax-hfi 28216  ax-his1 28219  ax-his2 28220  ax-his3 28221  ax-his4 28222  ax-hcompl 28339
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-iin 4663  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-of 7050  df-om 7219  df-1st 7321  df-2nd 7322  df-supp 7452  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-omul 7722  df-er 7899  df-map 8013  df-pm 8014  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8429  df-fi 8470  df-sup 8501  df-inf 8502  df-oi 8568  df-card 8926  df-acn 8929  df-cda 9153  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-7 11247  df-8 11248  df-9 11249  df-n0 11456  df-z 11541  df-dec 11657  df-uz 11851  df-q 11953  df-rp 11997  df-xneg 12110  df-xadd 12111  df-xmul 12112  df-ioo 12343  df-ico 12345  df-icc 12346  df-fz 12491  df-fzo 12631  df-fl 12758  df-seq 12967  df-exp 13026  df-hash 13283  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-clim 14389  df-rlim 14390  df-sum 14587  df-struct 16032  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-plusg 16127  df-mulr 16128  df-starv 16129  df-sca 16130  df-vsca 16131  df-ip 16132  df-tset 16133  df-ple 16134  df-ds 16137  df-unif 16138  df-hom 16139  df-cco 16140  df-rest 16256  df-topn 16257  df-0g 16275  df-gsum 16276  df-topgen 16277  df-pt 16278  df-prds 16281  df-xrs 16335  df-qtop 16340  df-imas 16341  df-xps 16343  df-mre 16419  df-mrc 16420  df-acs 16422  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-submnd 17508  df-mulg 17713  df-cntz 17921  df-cmn 18366  df-psmet 19911  df-xmet 19912  df-met 19913  df-bl 19914  df-mopn 19915  df-fbas 19916  df-fg 19917  df-cnfld 19920  df-top 20872  df-topon 20889  df-topsp 20910  df-bases 20923  df-cld 20996  df-ntr 20997  df-cls 20998  df-nei 21075  df-cn 21204  df-cnp 21205  df-lm 21206  df-haus 21292  df-tx 21538  df-hmeo 21731  df-fil 21822  df-fm 21914  df-flim 21915  df-flf 21916  df-xms 22297  df-ms 22298  df-tms 22299  df-cfil 23224  df-cau 23225  df-cmet 23226  df-grpo 27627  df-gid 27628  df-ginv 27629  df-gdiv 27630  df-ablo 27679  df-vc 27694  df-nv 27727  df-va 27730  df-ba 27731  df-sm 27732  df-0v 27733  df-vs 27734  df-nmcv 27735  df-ims 27736  df-dip 27836  df-ssp 27857  df-ph 27948  df-cbn 27999  df-hnorm 28105  df-hba 28106  df-hvsub 28108  df-hlim 28109  df-hcau 28110  df-sh 28344  df-ch 28358  df-oc 28389  df-ch0 28390  df-shs 28447  df-pjh 28534
This theorem is referenced by:  pj3i  29347
  Copyright terms: Public domain W3C validator