HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjclem1 Structured version   Visualization version   GIF version

Theorem pjclem1 29899
Description: Lemma for projection commutation theorem. (Contributed by NM, 16-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjclem1.1 𝐺C
pjclem1.2 𝐻C
Assertion
Ref Expression
pjclem1 (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ (proj𝐻)) = (proj‘(𝐺𝐻)))

Proof of Theorem pjclem1
StepHypRef Expression
1 pjclem1.1 . . . . . 6 𝐺C
2 pjclem1.2 . . . . . 6 𝐻C
31, 2cmbri 29294 . . . . 5 (𝐺 𝐶 𝐻𝐺 = ((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻))))
4 fveq2 6663 . . . . 5 (𝐺 = ((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻))) → (proj𝐺) = (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))))
53, 4sylbi 218 . . . 4 (𝐺 𝐶 𝐻 → (proj𝐺) = (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))))
6 inss2 4203 . . . . . . . 8 (𝐺𝐻) ⊆ 𝐻
71choccli 29011 . . . . . . . . . 10 (⊥‘𝐺) ∈ C
82, 7chub2i 29174 . . . . . . . . 9 𝐻 ⊆ ((⊥‘𝐺) ∨ 𝐻)
91, 2chdmm3i 29183 . . . . . . . . 9 (⊥‘(𝐺 ∩ (⊥‘𝐻))) = ((⊥‘𝐺) ∨ 𝐻)
108, 9sseqtrri 4001 . . . . . . . 8 𝐻 ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻)))
116, 10sstri 3973 . . . . . . 7 (𝐺𝐻) ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻)))
121, 2chincli 29164 . . . . . . . 8 (𝐺𝐻) ∈ C
132choccli 29011 . . . . . . . . 9 (⊥‘𝐻) ∈ C
141, 13chincli 29164 . . . . . . . 8 (𝐺 ∩ (⊥‘𝐻)) ∈ C
1512, 14pjscji 29874 . . . . . . 7 ((𝐺𝐻) ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻))) → (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻)))))
1611, 15ax-mp 5 . . . . . 6 (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))
1716eqeq2i 2831 . . . . 5 ((proj𝐺) = (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))) ↔ (proj𝐺) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻)))))
18 coeq2 5722 . . . . . 6 ((proj𝐺) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻)))) → ((proj𝐻) ∘ (proj𝐺)) = ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))))
1912pjfi 29408 . . . . . . . . . 10 (proj‘(𝐺𝐻)): ℋ⟶ ℋ
2014pjfi 29408 . . . . . . . . . 10 (proj‘(𝐺 ∩ (⊥‘𝐻))): ℋ⟶ ℋ
212, 19, 20pjsdii 29859 . . . . . . . . 9 ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))) = (((proj𝐻) ∘ (proj‘(𝐺𝐻))) +op ((proj𝐻) ∘ (proj‘(𝐺 ∩ (⊥‘𝐻)))))
2212, 2pjss1coi 29867 . . . . . . . . . . 11 ((𝐺𝐻) ⊆ 𝐻 ↔ ((proj𝐻) ∘ (proj‘(𝐺𝐻))) = (proj‘(𝐺𝐻)))
236, 22mpbi 231 . . . . . . . . . 10 ((proj𝐻) ∘ (proj‘(𝐺𝐻))) = (proj‘(𝐺𝐻))
242, 14pjorthcoi 29873 . . . . . . . . . . 11 (𝐻 ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻))) → ((proj𝐻) ∘ (proj‘(𝐺 ∩ (⊥‘𝐻)))) = 0hop )
2510, 24ax-mp 5 . . . . . . . . . 10 ((proj𝐻) ∘ (proj‘(𝐺 ∩ (⊥‘𝐻)))) = 0hop
2623, 25oveq12i 7157 . . . . . . . . 9 (((proj𝐻) ∘ (proj‘(𝐺𝐻))) +op ((proj𝐻) ∘ (proj‘(𝐺 ∩ (⊥‘𝐻))))) = ((proj‘(𝐺𝐻)) +op 0hop )
2719hoaddid1i 29490 . . . . . . . . 9 ((proj‘(𝐺𝐻)) +op 0hop ) = (proj‘(𝐺𝐻))
2821, 26, 273eqtri 2845 . . . . . . . 8 ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))) = (proj‘(𝐺𝐻))
2928eqeq2i 2831 . . . . . . 7 (((proj𝐻) ∘ (proj𝐺)) = ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))) ↔ ((proj𝐻) ∘ (proj𝐺)) = (proj‘(𝐺𝐻)))
30 coeq2 5722 . . . . . . . 8 (((proj𝐻) ∘ (proj𝐺)) = (proj‘(𝐺𝐻)) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = ((proj𝐺) ∘ (proj‘(𝐺𝐻))))
31 inss1 4202 . . . . . . . . 9 (𝐺𝐻) ⊆ 𝐺
3212, 1pjss1coi 29867 . . . . . . . . 9 ((𝐺𝐻) ⊆ 𝐺 ↔ ((proj𝐺) ∘ (proj‘(𝐺𝐻))) = (proj‘(𝐺𝐻)))
3331, 32mpbi 231 . . . . . . . 8 ((proj𝐺) ∘ (proj‘(𝐺𝐻))) = (proj‘(𝐺𝐻))
3430, 33syl6eq 2869 . . . . . . 7 (((proj𝐻) ∘ (proj𝐺)) = (proj‘(𝐺𝐻)) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
3529, 34sylbi 218 . . . . . 6 (((proj𝐻) ∘ (proj𝐺)) = ((proj𝐻) ∘ ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻))))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
3618, 35syl 17 . . . . 5 ((proj𝐺) = ((proj‘(𝐺𝐻)) +op (proj‘(𝐺 ∩ (⊥‘𝐻)))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
3717, 36sylbi 218 . . . 4 ((proj𝐺) = (proj‘((𝐺𝐻) ∨ (𝐺 ∩ (⊥‘𝐻)))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
385, 37syl 17 . . 3 (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) = (proj‘(𝐺𝐻)))
391, 2cmcm3i 29298 . . . . 5 (𝐺 𝐶 𝐻 ↔ (⊥‘𝐺) 𝐶 𝐻)
407, 2cmbri 29294 . . . . 5 ((⊥‘𝐺) 𝐶 𝐻 ↔ (⊥‘𝐺) = (((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻))))
4139, 40bitri 276 . . . 4 (𝐺 𝐶 𝐻 ↔ (⊥‘𝐺) = (((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻))))
42 fveq2 6663 . . . . 5 ((⊥‘𝐺) = (((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻))) → (proj‘(⊥‘𝐺)) = (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))))
43 inss2 4203 . . . . . . . . 9 ((⊥‘𝐺) ∩ 𝐻) ⊆ 𝐻
442, 1chub2i 29174 . . . . . . . . . 10 𝐻 ⊆ (𝐺 𝐻)
451, 2chdmm4i 29184 . . . . . . . . . 10 (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻))) = (𝐺 𝐻)
4644, 45sseqtrri 4001 . . . . . . . . 9 𝐻 ⊆ (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻)))
4743, 46sstri 3973 . . . . . . . 8 ((⊥‘𝐺) ∩ 𝐻) ⊆ (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻)))
487, 2chincli 29164 . . . . . . . . 9 ((⊥‘𝐺) ∩ 𝐻) ∈ C
497, 13chincli 29164 . . . . . . . . 9 ((⊥‘𝐺) ∩ (⊥‘𝐻)) ∈ C
5048, 49pjscji 29874 . . . . . . . 8 (((⊥‘𝐺) ∩ 𝐻) ⊆ (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻))) → (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))))
5147, 50ax-mp 5 . . . . . . 7 (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))
5251eqeq2i 2831 . . . . . 6 ((proj‘(⊥‘𝐺)) = (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))) ↔ (proj‘(⊥‘𝐺)) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))))
53 coeq2 5722 . . . . . . 7 ((proj‘(⊥‘𝐺)) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))) → ((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))))
5448pjfi 29408 . . . . . . . . . . 11 (proj‘((⊥‘𝐺) ∩ 𝐻)): ℋ⟶ ℋ
5549pjfi 29408 . . . . . . . . . . 11 (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))): ℋ⟶ ℋ
562, 54, 55pjsdii 29859 . . . . . . . . . 10 ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) = (((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) +op ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))))
5748, 2pjss1coi 29867 . . . . . . . . . . . 12 (((⊥‘𝐺) ∩ 𝐻) ⊆ 𝐻 ↔ ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) = (proj‘((⊥‘𝐺) ∩ 𝐻)))
5843, 57mpbi 231 . . . . . . . . . . 11 ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) = (proj‘((⊥‘𝐺) ∩ 𝐻))
592, 49pjorthcoi 29873 . . . . . . . . . . . 12 (𝐻 ⊆ (⊥‘((⊥‘𝐺) ∩ (⊥‘𝐻))) → ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))) = 0hop )
6046, 59ax-mp 5 . . . . . . . . . . 11 ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))) = 0hop
6158, 60oveq12i 7157 . . . . . . . . . 10 (((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) +op ((proj𝐻) ∘ (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op 0hop )
6254hoaddid1i 29490 . . . . . . . . . 10 ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op 0hop ) = (proj‘((⊥‘𝐺) ∩ 𝐻))
6356, 61, 623eqtri 2845 . . . . . . . . 9 ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) = (proj‘((⊥‘𝐺) ∩ 𝐻))
6463eqeq2i 2831 . . . . . . . 8 (((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) ↔ ((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = (proj‘((⊥‘𝐺) ∩ 𝐻)))
65 coeq2 5722 . . . . . . . . 9 (((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = (proj‘((⊥‘𝐺) ∩ 𝐻)) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = ((proj𝐺) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))))
661, 13chub1i 29173 . . . . . . . . . . 11 𝐺 ⊆ (𝐺 (⊥‘𝐻))
671, 2chdmm2i 29182 . . . . . . . . . . 11 (⊥‘((⊥‘𝐺) ∩ 𝐻)) = (𝐺 (⊥‘𝐻))
6866, 67sseqtrri 4001 . . . . . . . . . 10 𝐺 ⊆ (⊥‘((⊥‘𝐺) ∩ 𝐻))
691, 48pjorthcoi 29873 . . . . . . . . . 10 (𝐺 ⊆ (⊥‘((⊥‘𝐺) ∩ 𝐻)) → ((proj𝐺) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) = 0hop )
7068, 69ax-mp 5 . . . . . . . . 9 ((proj𝐺) ∘ (proj‘((⊥‘𝐺) ∩ 𝐻))) = 0hop
7165, 70syl6eq 2869 . . . . . . . 8 (((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = (proj‘((⊥‘𝐺) ∩ 𝐻)) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7264, 71sylbi 218 . . . . . . 7 (((proj𝐻) ∘ (proj‘(⊥‘𝐺))) = ((proj𝐻) ∘ ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻))))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7353, 72syl 17 . . . . . 6 ((proj‘(⊥‘𝐺)) = ((proj‘((⊥‘𝐺) ∩ 𝐻)) +op (proj‘((⊥‘𝐺) ∩ (⊥‘𝐻)))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7452, 73sylbi 218 . . . . 5 ((proj‘(⊥‘𝐺)) = (proj‘(((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻)))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7542, 74syl 17 . . . 4 ((⊥‘𝐺) = (((⊥‘𝐺) ∩ 𝐻) ∨ ((⊥‘𝐺) ∩ (⊥‘𝐻))) → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7641, 75sylbi 218 . . 3 (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))) = 0hop )
7738, 76oveq12d 7163 . 2 (𝐺 𝐶 𝐻 → (((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) +op ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))) = ((proj‘(𝐺𝐻)) +op 0hop ))
78 df-iop 29453 . . . . . . 7 Iop = (proj‘ ℋ)
7978coeq2i 5724 . . . . . 6 ((proj𝐻) ∘ Iop ) = ((proj𝐻) ∘ (proj‘ ℋ))
802pjfi 29408 . . . . . . 7 (proj𝐻): ℋ⟶ ℋ
8180hoid1i 29493 . . . . . 6 ((proj𝐻) ∘ Iop ) = (proj𝐻)
8279, 81eqtr3i 2843 . . . . 5 ((proj𝐻) ∘ (proj‘ ℋ)) = (proj𝐻)
831pjtoi 29883 . . . . . . 7 ((proj𝐺) +op (proj‘(⊥‘𝐺))) = (proj‘ ℋ)
8483coeq2i 5724 . . . . . 6 ((proj𝐻) ∘ ((proj𝐺) +op (proj‘(⊥‘𝐺)))) = ((proj𝐻) ∘ (proj‘ ℋ))
851pjfi 29408 . . . . . . 7 (proj𝐺): ℋ⟶ ℋ
867pjfi 29408 . . . . . . 7 (proj‘(⊥‘𝐺)): ℋ⟶ ℋ
872, 85, 86pjsdii 29859 . . . . . 6 ((proj𝐻) ∘ ((proj𝐺) +op (proj‘(⊥‘𝐺)))) = (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))
8884, 87eqtr3i 2843 . . . . 5 ((proj𝐻) ∘ (proj‘ ℋ)) = (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))
8982, 88eqtr3i 2843 . . . 4 (proj𝐻) = (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))
9089coeq2i 5724 . . 3 ((proj𝐺) ∘ (proj𝐻)) = ((proj𝐺) ∘ (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))))
9180, 85hocofi 29470 . . . 4 ((proj𝐻) ∘ (proj𝐺)): ℋ⟶ ℋ
9280, 86hocofi 29470 . . . 4 ((proj𝐻) ∘ (proj‘(⊥‘𝐺))): ℋ⟶ ℋ
931, 91, 92pjsdii 29859 . . 3 ((proj𝐺) ∘ (((proj𝐻) ∘ (proj𝐺)) +op ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))) = (((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) +op ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺)))))
9490, 93eqtr2i 2842 . 2 (((proj𝐺) ∘ ((proj𝐻) ∘ (proj𝐺))) +op ((proj𝐺) ∘ ((proj𝐻) ∘ (proj‘(⊥‘𝐺))))) = ((proj𝐺) ∘ (proj𝐻))
9577, 94, 273eqtr3g 2876 1 (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ (proj𝐻)) = (proj‘(𝐺𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105  cin 3932  wss 3933   class class class wbr 5057  ccom 5552  cfv 6348  (class class class)co 7145  chba 28623   C cch 28633  cort 28634   chj 28637   𝐶 ccm 28640  projcpjh 28641   +op chos 28642   0hop ch0o 28647   Iop chio 28648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cc 9845  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605  ax-hilex 28703  ax-hfvadd 28704  ax-hvcom 28705  ax-hvass 28706  ax-hv0cl 28707  ax-hvaddid 28708  ax-hfvmul 28709  ax-hvmulid 28710  ax-hvmulass 28711  ax-hvdistr1 28712  ax-hvdistr2 28713  ax-hvmul0 28714  ax-hfi 28783  ax-his1 28786  ax-his2 28787  ax-his3 28788  ax-his4 28789  ax-hcompl 28906
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-omul 8096  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-acn 9359  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-rlim 14834  df-sum 15031  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-cn 21763  df-cnp 21764  df-lm 21765  df-haus 21851  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cfil 23785  df-cau 23786  df-cmet 23787  df-grpo 28197  df-gid 28198  df-ginv 28199  df-gdiv 28200  df-ablo 28249  df-vc 28263  df-nv 28296  df-va 28299  df-ba 28300  df-sm 28301  df-0v 28302  df-vs 28303  df-nmcv 28304  df-ims 28305  df-dip 28405  df-ssp 28426  df-ph 28517  df-cbn 28567  df-hnorm 28672  df-hba 28673  df-hvsub 28675  df-hlim 28676  df-hcau 28677  df-sh 28911  df-ch 28925  df-oc 28956  df-ch0 28957  df-shs 29012  df-chj 29014  df-pjh 29099  df-cm 29287  df-hosum 29434  df-h0op 29452  df-iop 29453
This theorem is referenced by:  pjclem2  29900
  Copyright terms: Public domain W3C validator