MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjf Structured version   Visualization version   GIF version

Theorem pjf 19976
Description: A projection is a function on the base set. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjf.k 𝐾 = (proj‘𝑊)
pjf.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
pjf (𝑇 ∈ dom 𝐾 → (𝐾𝑇):𝑉𝑉)

Proof of Theorem pjf
StepHypRef Expression
1 pjf.v . . . 4 𝑉 = (Base‘𝑊)
2 eqid 2621 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
3 eqid 2621 . . . 4 (ocv‘𝑊) = (ocv‘𝑊)
4 eqid 2621 . . . 4 (proj1𝑊) = (proj1𝑊)
5 pjf.k . . . 4 𝐾 = (proj‘𝑊)
61, 2, 3, 4, 5pjdm 19970 . . 3 (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)):𝑉𝑉))
76simprbi 480 . 2 (𝑇 ∈ dom 𝐾 → (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)):𝑉𝑉)
83, 4, 5pjval 19973 . . 3 (𝑇 ∈ dom 𝐾 → (𝐾𝑇) = (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)))
98feq1d 5987 . 2 (𝑇 ∈ dom 𝐾 → ((𝐾𝑇):𝑉𝑉 ↔ (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)):𝑉𝑉))
107, 9mpbird 247 1 (𝑇 ∈ dom 𝐾 → (𝐾𝑇):𝑉𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  dom cdm 5074  wf 5843  cfv 5847  (class class class)co 6604  Basecbs 15781  proj1cpj1 17971  LSubSpclss 18851  ocvcocv 19923  projcpj 19963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-map 7804  df-pj 19966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator