MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjff Structured version   Visualization version   GIF version

Theorem pjff 20850
Description: A projection is a linear operator. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypothesis
Ref Expression
pjf.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjff (𝑊 ∈ PreHil → 𝐾:dom 𝐾⟶(𝑊 LMHom 𝑊))

Proof of Theorem pjff
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 eqid 2821 . . . 4 (LSSum‘𝑊) = (LSSum‘𝑊)
3 eqid 2821 . . . 4 (0g𝑊) = (0g𝑊)
4 eqid 2821 . . . 4 (proj1𝑊) = (proj1𝑊)
5 phllmod 20768 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
65adantr 483 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑊 ∈ LMod)
7 eqid 2821 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
8 eqid 2821 . . . . . 6 (ocv‘𝑊) = (ocv‘𝑊)
9 pjf.k . . . . . 6 𝐾 = (proj‘𝑊)
107, 1, 8, 2, 9pjdm2 20849 . . . . 5 (𝑊 ∈ PreHil → (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊))))
1110simprbda 501 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ∈ (LSubSp‘𝑊))
127, 1lssss 19702 . . . . . 6 (𝑥 ∈ (LSubSp‘𝑊) → 𝑥 ⊆ (Base‘𝑊))
1311, 12syl 17 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ⊆ (Base‘𝑊))
147, 8, 1ocvlss 20810 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘𝑥) ∈ (LSubSp‘𝑊))
1513, 14syldan 593 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑥) ∈ (LSubSp‘𝑊))
168, 1, 3ocvin 20812 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (LSubSp‘𝑊)) → (𝑥 ∩ ((ocv‘𝑊)‘𝑥)) = {(0g𝑊)})
1711, 16syldan 593 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥 ∩ ((ocv‘𝑊)‘𝑥)) = {(0g𝑊)})
181, 2, 3, 4, 6, 11, 15, 17pj1lmhm 19866 . . 3 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)) ∈ ((𝑊s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) LMHom 𝑊))
1910simplbda 502 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊))
2019oveq2d 7166 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) = (𝑊s (Base‘𝑊)))
217ressid 16553 . . . . . 6 (𝑊 ∈ PreHil → (𝑊s (Base‘𝑊)) = 𝑊)
2221adantr 483 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊s (Base‘𝑊)) = 𝑊)
2320, 22eqtrd 2856 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) = 𝑊)
2423oveq1d 7165 . . 3 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → ((𝑊s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) LMHom 𝑊) = (𝑊 LMHom 𝑊))
2518, 24eleqtrd 2915 . 2 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)) ∈ (𝑊 LMHom 𝑊))
268, 4, 9pjfval2 20847 . 2 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)))
2725, 26fmptd 6873 1 (𝑊 ∈ PreHil → 𝐾:dom 𝐾⟶(𝑊 LMHom 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cin 3935  wss 3936  {csn 4561  dom cdm 5550  wf 6346  cfv 6350  (class class class)co 7150  Basecbs 16477  s cress 16478  0gc0g 16707  LSSumclsm 18753  proj1cpj1 18754  LModclmod 19628  LSubSpclss 19697   LMHom clmhm 19785  PreHilcphl 20762  ocvcocv 20798  projcpj 20838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-sca 16575  df-vsca 16576  df-ip 16577  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-ghm 18350  df-cntz 18441  df-lsm 18755  df-pj1 18756  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-lmod 19630  df-lss 19698  df-lmhm 19788  df-lvec 19869  df-sra 19938  df-rgmod 19939  df-phl 20764  df-ocv 20801  df-pj 20841
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator