HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjnmopi Structured version   Visualization version   GIF version

Theorem pjnmopi 28184
Description: The operator norm of a projector on a nonzero closed subspace is one. Part of Theorem 26.1 of [Halmos] p. 43. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
pjhmop.1 𝐻C
Assertion
Ref Expression
pjnmopi (𝐻 ≠ 0 → (normop‘(proj𝐻)) = 1)

Proof of Theorem pjnmopi
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pjhmop.1 . . . 4 𝐻C
21pjfi 27740 . . 3 (proj𝐻): ℋ⟶ ℋ
3 nmopval 27892 . . 3 ((proj𝐻): ℋ⟶ ℋ → (normop‘(proj𝐻)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < ))
42, 3ax-mp 5 . 2 (normop‘(proj𝐻)) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < )
5 vex 3175 . . . . . 6 𝑧 ∈ V
6 eqeq1 2613 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = (norm‘((proj𝐻)‘𝑦)) ↔ 𝑧 = (norm‘((proj𝐻)‘𝑦))))
76anbi2d 735 . . . . . . 7 (𝑥 = 𝑧 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦)))))
87rexbidv 3033 . . . . . 6 (𝑥 = 𝑧 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦)))))
95, 8elab 3318 . . . . 5 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))))
10 pjnorm 27760 . . . . . . . . . . 11 ((𝐻C𝑦 ∈ ℋ) → (norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦))
111, 10mpan 701 . . . . . . . . . 10 (𝑦 ∈ ℋ → (norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦))
121pjhcli 27454 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → ((proj𝐻)‘𝑦) ∈ ℋ)
13 normcl 27159 . . . . . . . . . . . 12 (((proj𝐻)‘𝑦) ∈ ℋ → (norm‘((proj𝐻)‘𝑦)) ∈ ℝ)
1412, 13syl 17 . . . . . . . . . . 11 (𝑦 ∈ ℋ → (norm‘((proj𝐻)‘𝑦)) ∈ ℝ)
15 normcl 27159 . . . . . . . . . . 11 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
16 1re 9895 . . . . . . . . . . . 12 1 ∈ ℝ
17 letr 9982 . . . . . . . . . . . 12 (((norm‘((proj𝐻)‘𝑦)) ∈ ℝ ∧ (norm𝑦) ∈ ℝ ∧ 1 ∈ ℝ) → (((norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦) ∧ (norm𝑦) ≤ 1) → (norm‘((proj𝐻)‘𝑦)) ≤ 1))
1816, 17mp3an3 1404 . . . . . . . . . . 11 (((norm‘((proj𝐻)‘𝑦)) ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → (((norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦) ∧ (norm𝑦) ≤ 1) → (norm‘((proj𝐻)‘𝑦)) ≤ 1))
1914, 15, 18syl2anc 690 . . . . . . . . . 10 (𝑦 ∈ ℋ → (((norm‘((proj𝐻)‘𝑦)) ≤ (norm𝑦) ∧ (norm𝑦) ≤ 1) → (norm‘((proj𝐻)‘𝑦)) ≤ 1))
2011, 19mpand 706 . . . . . . . . 9 (𝑦 ∈ ℋ → ((norm𝑦) ≤ 1 → (norm‘((proj𝐻)‘𝑦)) ≤ 1))
2120imp 443 . . . . . . . 8 ((𝑦 ∈ ℋ ∧ (norm𝑦) ≤ 1) → (norm‘((proj𝐻)‘𝑦)) ≤ 1)
22 breq1 4580 . . . . . . . . 9 (𝑧 = (norm‘((proj𝐻)‘𝑦)) → (𝑧 ≤ 1 ↔ (norm‘((proj𝐻)‘𝑦)) ≤ 1))
2322biimparc 502 . . . . . . . 8 (((norm‘((proj𝐻)‘𝑦)) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))) → 𝑧 ≤ 1)
2421, 23sylan 486 . . . . . . 7 (((𝑦 ∈ ℋ ∧ (norm𝑦) ≤ 1) ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))) → 𝑧 ≤ 1)
2524expl 645 . . . . . 6 (𝑦 ∈ ℋ → (((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))) → 𝑧 ≤ 1))
2625rexlimiv 3008 . . . . 5 (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑧 = (norm‘((proj𝐻)‘𝑦))) → 𝑧 ≤ 1)
279, 26sylbi 205 . . . 4 (𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} → 𝑧 ≤ 1)
2827rgen 2905 . . 3 𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 ≤ 1
291cheli 27266 . . . . . . . . . 10 (𝑦𝐻𝑦 ∈ ℋ)
3029adantr 479 . . . . . . . . 9 ((𝑦𝐻 ∧ (norm𝑦) = 1) → 𝑦 ∈ ℋ)
3129, 15syl 17 . . . . . . . . . 10 (𝑦𝐻 → (norm𝑦) ∈ ℝ)
32 eqle 9990 . . . . . . . . . 10 (((norm𝑦) ∈ ℝ ∧ (norm𝑦) = 1) → (norm𝑦) ≤ 1)
3331, 32sylan 486 . . . . . . . . 9 ((𝑦𝐻 ∧ (norm𝑦) = 1) → (norm𝑦) ≤ 1)
34 pjid 27731 . . . . . . . . . . . . 13 ((𝐻C𝑦𝐻) → ((proj𝐻)‘𝑦) = 𝑦)
351, 34mpan 701 . . . . . . . . . . . 12 (𝑦𝐻 → ((proj𝐻)‘𝑦) = 𝑦)
3635fveq2d 6091 . . . . . . . . . . 11 (𝑦𝐻 → (norm‘((proj𝐻)‘𝑦)) = (norm𝑦))
3736adantr 479 . . . . . . . . . 10 ((𝑦𝐻 ∧ (norm𝑦) = 1) → (norm‘((proj𝐻)‘𝑦)) = (norm𝑦))
38 simpr 475 . . . . . . . . . 10 ((𝑦𝐻 ∧ (norm𝑦) = 1) → (norm𝑦) = 1)
3937, 38eqtr2d 2644 . . . . . . . . 9 ((𝑦𝐻 ∧ (norm𝑦) = 1) → 1 = (norm‘((proj𝐻)‘𝑦)))
4030, 33, 39jca32 555 . . . . . . . 8 ((𝑦𝐻 ∧ (norm𝑦) = 1) → (𝑦 ∈ ℋ ∧ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦)))))
4140reximi2 2992 . . . . . . 7 (∃𝑦𝐻 (norm𝑦) = 1 → ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦))))
421chne0i 27489 . . . . . . . 8 (𝐻 ≠ 0 ↔ ∃𝑦𝐻 𝑦 ≠ 0)
431chshii 27261 . . . . . . . . 9 𝐻S
4443norm1exi 27284 . . . . . . . 8 (∃𝑦𝐻 𝑦 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
4542, 44bitri 262 . . . . . . 7 (𝐻 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
46 1ex 9891 . . . . . . . 8 1 ∈ V
47 eqeq1 2613 . . . . . . . . . 10 (𝑥 = 1 → (𝑥 = (norm‘((proj𝐻)‘𝑦)) ↔ 1 = (norm‘((proj𝐻)‘𝑦))))
4847anbi2d 735 . . . . . . . . 9 (𝑥 = 1 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦)))))
4948rexbidv 3033 . . . . . . . 8 (𝑥 = 1 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦)))))
5046, 49elab 3318 . . . . . . 7 (1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 1 = (norm‘((proj𝐻)‘𝑦))))
5141, 45, 503imtr4i 279 . . . . . 6 (𝐻 ≠ 0 → 1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))})
52 breq2 4581 . . . . . . 7 (𝑤 = 1 → (𝑧 < 𝑤𝑧 < 1))
5352rspcev 3281 . . . . . 6 ((1 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ∧ 𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤)
5451, 53sylan 486 . . . . 5 ((𝐻 ≠ 0𝑧 < 1) → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤)
5554ex 448 . . . 4 (𝐻 ≠ 0 → (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤))
5655ralrimivw 2949 . . 3 (𝐻 ≠ 0 → ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤))
57 nmopsetretHIL 27900 . . . . . 6 ((proj𝐻): ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ⊆ ℝ)
582, 57ax-mp 5 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ⊆ ℝ
59 ressxr 9939 . . . . 5 ℝ ⊆ ℝ*
6058, 59sstri 3576 . . . 4 {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ⊆ ℝ*
6116rexri 9948 . . . 4 1 ∈ ℝ*
62 supxr2 11974 . . . 4 ((({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))} ⊆ ℝ* ∧ 1 ∈ ℝ*) ∧ (∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 ≤ 1 ∧ ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤))) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < ) = 1)
6360, 61, 62mpanl12 713 . . 3 ((∀𝑧 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 ≤ 1 ∧ ∀𝑧 ∈ ℝ (𝑧 < 1 → ∃𝑤 ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}𝑧 < 𝑤)) → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < ) = 1)
6428, 56, 63sylancr 693 . 2 (𝐻 ≠ 0 → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (norm‘((proj𝐻)‘𝑦)))}, ℝ*, < ) = 1)
654, 64syl5eq 2655 1 (𝐻 ≠ 0 → (normop‘(proj𝐻)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  {cab 2595  wne 2779  wral 2895  wrex 2896  wss 3539   class class class wbr 4577  wf 5785  cfv 5789  supcsup 8206  cr 9791  1c1 9793  *cxr 9929   < clt 9930  cle 9931  chil 26953  normcno 26957  0c0v 26958   C cch 26963  0c0h 26969  projcpjh 26971  normopcnop 26979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-inf2 8398  ax-cc 9117  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872  ax-hilex 27033  ax-hfvadd 27034  ax-hvcom 27035  ax-hvass 27036  ax-hv0cl 27037  ax-hvaddid 27038  ax-hfvmul 27039  ax-hvmulid 27040  ax-hvmulass 27041  ax-hvdistr1 27042  ax-hvdistr2 27043  ax-hvmul0 27044  ax-hfi 27113  ax-his1 27116  ax-his2 27117  ax-his3 27118  ax-his4 27119  ax-hcompl 27236
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-se 4987  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-isom 5798  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-omul 7429  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-acn 8628  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-4 10930  df-5 10931  df-6 10932  df-7 10933  df-8 10934  df-9 10935  df-n0 11142  df-z 11213  df-dec 11328  df-uz 11522  df-q 11623  df-rp 11667  df-xneg 11780  df-xadd 11781  df-xmul 11782  df-ioo 12008  df-ico 12010  df-icc 12011  df-fz 12155  df-fzo 12292  df-fl 12412  df-seq 12621  df-exp 12680  df-hash 12937  df-cj 13635  df-re 13636  df-im 13637  df-sqrt 13771  df-abs 13772  df-clim 14015  df-rlim 14016  df-sum 14213  df-struct 15645  df-ndx 15646  df-slot 15647  df-base 15648  df-sets 15649  df-ress 15650  df-plusg 15729  df-mulr 15730  df-starv 15731  df-sca 15732  df-vsca 15733  df-ip 15734  df-tset 15735  df-ple 15736  df-ds 15739  df-unif 15740  df-hom 15741  df-cco 15742  df-rest 15854  df-topn 15855  df-0g 15873  df-gsum 15874  df-topgen 15875  df-pt 15876  df-prds 15879  df-xrs 15933  df-qtop 15938  df-imas 15939  df-xps 15941  df-mre 16017  df-mrc 16018  df-acs 16020  df-mgm 17013  df-sgrp 17055  df-mnd 17066  df-submnd 17107  df-mulg 17312  df-cntz 17521  df-cmn 17966  df-psmet 19507  df-xmet 19508  df-met 19509  df-bl 19510  df-mopn 19511  df-fbas 19512  df-fg 19513  df-cnfld 19516  df-top 20468  df-bases 20469  df-topon 20470  df-topsp 20471  df-cld 20580  df-ntr 20581  df-cls 20582  df-nei 20659  df-cn 20788  df-cnp 20789  df-lm 20790  df-haus 20876  df-tx 21122  df-hmeo 21315  df-fil 21407  df-fm 21499  df-flim 21500  df-flf 21501  df-xms 21882  df-ms 21883  df-tms 21884  df-cfil 22805  df-cau 22806  df-cmet 22807  df-grpo 26524  df-gid 26525  df-ginv 26526  df-gdiv 26527  df-ablo 26576  df-vc 26591  df-nv 26624  df-va 26627  df-ba 26628  df-sm 26629  df-0v 26630  df-vs 26631  df-nmcv 26632  df-ims 26633  df-dip 26733  df-ssp 26754  df-ph 26845  df-cbn 26896  df-hnorm 27002  df-hba 27003  df-hvsub 27005  df-hlim 27006  df-hcau 27007  df-sh 27241  df-ch 27255  df-oc 27286  df-ch0 27287  df-shs 27344  df-pjh 27431  df-nmop 27875
This theorem is referenced by:  pjbdlni  28185
  Copyright terms: Public domain W3C validator