![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjoml | Structured version Visualization version GIF version |
Description: Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of [Kalmbach] p. 22. Derived using projections; compare omlsi 28593. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjoml | ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Sℋ ) ∧ (𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ)) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3767 | . . . . 5 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (𝐴 ⊆ 𝐵 ↔ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ 𝐵)) | |
2 | fveq2 6353 | . . . . . . 7 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (⊥‘𝐴) = (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) | |
3 | 2 | ineq2d 3957 | . . . . . 6 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (𝐵 ∩ (⊥‘𝐴)) = (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ)))) |
4 | 3 | eqeq1d 2762 | . . . . 5 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → ((𝐵 ∩ (⊥‘𝐴)) = 0ℋ ↔ (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ)) |
5 | 1, 4 | anbi12d 749 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ) ↔ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ))) |
6 | eqeq1 2764 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (𝐴 = 𝐵 ↔ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = 𝐵)) | |
7 | 5, 6 | imbi12d 333 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) → (((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ) → 𝐴 = 𝐵) ↔ ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ) → if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = 𝐵))) |
8 | sseq2 3768 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) → (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ 𝐵 ↔ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ if(𝐵 ∈ Sℋ , 𝐵, 0ℋ))) | |
9 | ineq1 3950 | . . . . . 6 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) → (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = (if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ)))) | |
10 | 9 | eqeq1d 2762 | . . . . 5 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) → ((𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ ↔ (if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ)) |
11 | 8, 10 | anbi12d 749 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) → ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ) ↔ (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∧ (if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ))) |
12 | eqeq2 2771 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) → (if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = 𝐵 ↔ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ))) | |
13 | 11, 12 | imbi12d 333 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) → (((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ) → if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = 𝐵) ↔ ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∧ (if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ) → if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ)))) |
14 | h0elch 28442 | . . . . 5 ⊢ 0ℋ ∈ Cℋ | |
15 | 14 | elimel 4294 | . . . 4 ⊢ if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ∈ Cℋ |
16 | h0elsh 28443 | . . . . 5 ⊢ 0ℋ ∈ Sℋ | |
17 | 16 | elimel 4294 | . . . 4 ⊢ if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∈ Sℋ |
18 | 15, 17 | pjomli 28624 | . . 3 ⊢ ((if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) ⊆ if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∧ (if(𝐵 ∈ Sℋ , 𝐵, 0ℋ) ∩ (⊥‘if(𝐴 ∈ Cℋ , 𝐴, 0ℋ))) = 0ℋ) → if(𝐴 ∈ Cℋ , 𝐴, 0ℋ) = if(𝐵 ∈ Sℋ , 𝐵, 0ℋ)) |
19 | 7, 13, 18 | dedth2h 4284 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Sℋ ) → ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ) → 𝐴 = 𝐵)) |
20 | 19 | imp 444 | 1 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Sℋ ) ∧ (𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0ℋ)) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∩ cin 3714 ⊆ wss 3715 ifcif 4230 ‘cfv 6049 Sℋ csh 28115 Cℋ cch 28116 ⊥cort 28117 0ℋc0h 28122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cc 9469 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 ax-addf 10227 ax-mulf 10228 ax-hilex 28186 ax-hfvadd 28187 ax-hvcom 28188 ax-hvass 28189 ax-hv0cl 28190 ax-hvaddid 28191 ax-hfvmul 28192 ax-hvmulid 28193 ax-hvmulass 28194 ax-hvdistr1 28195 ax-hvdistr2 28196 ax-hvmul0 28197 ax-hfi 28266 ax-his1 28269 ax-his2 28270 ax-his3 28271 ax-his4 28272 ax-hcompl 28389 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-omul 7735 df-er 7913 df-map 8027 df-pm 8028 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-fi 8484 df-sup 8515 df-inf 8516 df-oi 8582 df-card 8975 df-acn 8978 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-n0 11505 df-z 11590 df-uz 11900 df-q 12002 df-rp 12046 df-xneg 12159 df-xadd 12160 df-xmul 12161 df-ico 12394 df-icc 12395 df-fz 12540 df-fl 12807 df-seq 13016 df-exp 13075 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-clim 14438 df-rlim 14439 df-rest 16305 df-topgen 16326 df-psmet 19960 df-xmet 19961 df-met 19962 df-bl 19963 df-mopn 19964 df-fbas 19965 df-fg 19966 df-top 20921 df-topon 20938 df-bases 20972 df-cld 21045 df-ntr 21046 df-cls 21047 df-nei 21124 df-lm 21255 df-haus 21341 df-fil 21871 df-fm 21963 df-flim 21964 df-flf 21965 df-cfil 23273 df-cau 23274 df-cmet 23275 df-grpo 27677 df-gid 27678 df-ginv 27679 df-gdiv 27680 df-ablo 27729 df-vc 27744 df-nv 27777 df-va 27780 df-ba 27781 df-sm 27782 df-0v 27783 df-vs 27784 df-nmcv 27785 df-ims 27786 df-ssp 27907 df-ph 27998 df-cbn 28049 df-hnorm 28155 df-hba 28156 df-hvsub 28158 df-hlim 28159 df-hcau 28160 df-sh 28394 df-ch 28408 df-oc 28439 df-ch0 28440 |
This theorem is referenced by: fh1 28807 fh2 28808 |
Copyright terms: Public domain | W3C validator |