HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjpjpre Structured version   Visualization version   GIF version

Theorem pjpjpre 28124
Description: Decomposition of a vector into projections. This formulation of axpjpj 28125 avoids pjhth 28098. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjpjpre.1 (𝜑𝐻C )
pjpjpre.2 (𝜑𝐴 ∈ (𝐻 + (⊥‘𝐻)))
Assertion
Ref Expression
pjpjpre (𝜑𝐴 = (((proj𝐻)‘𝐴) + ((proj‘(⊥‘𝐻))‘𝐴)))

Proof of Theorem pjpjpre
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pjpjpre.2 . . 3 (𝜑𝐴 ∈ (𝐻 + (⊥‘𝐻)))
2 pjpjpre.1 . . . . 5 (𝜑𝐻C )
3 chsh 27927 . . . . 5 (𝐻C𝐻S )
42, 3syl 17 . . . 4 (𝜑𝐻S )
5 shocsh 27989 . . . . 5 (𝐻S → (⊥‘𝐻) ∈ S )
64, 5syl 17 . . . 4 (𝜑 → (⊥‘𝐻) ∈ S )
7 shsel 28019 . . . 4 ((𝐻S ∧ (⊥‘𝐻) ∈ S ) → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
84, 6, 7syl2anc 692 . . 3 (𝜑 → (𝐴 ∈ (𝐻 + (⊥‘𝐻)) ↔ ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦)))
91, 8mpbid 222 . 2 (𝜑 → ∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
10 simprr 795 . . . . 5 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝐴 = (𝑥 + 𝑦))
11 simprll 801 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝑥𝐻)
12 simprlr 802 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝑦 ∈ (⊥‘𝐻))
13 rspe 2997 . . . . . . . 8 ((𝑦 ∈ (⊥‘𝐻) ∧ 𝐴 = (𝑥 + 𝑦)) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
1412, 10, 13syl2anc 692 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))
15 pjpreeq 28103 . . . . . . . . 9 ((𝐻C𝐴 ∈ (𝐻 + (⊥‘𝐻))) → (((proj𝐻)‘𝐴) = 𝑥 ↔ (𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))))
162, 1, 15syl2anc 692 . . . . . . . 8 (𝜑 → (((proj𝐻)‘𝐴) = 𝑥 ↔ (𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))))
1716adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → (((proj𝐻)‘𝐴) = 𝑥 ↔ (𝑥𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦))))
1811, 14, 17mpbir2and 956 . . . . . 6 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → ((proj𝐻)‘𝐴) = 𝑥)
19 shococss 27999 . . . . . . . . . . 11 (𝐻S𝐻 ⊆ (⊥‘(⊥‘𝐻)))
204, 19syl 17 . . . . . . . . . 10 (𝜑𝐻 ⊆ (⊥‘(⊥‘𝐻)))
2120adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝐻 ⊆ (⊥‘(⊥‘𝐻)))
2221, 11sseldd 3584 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝑥 ∈ (⊥‘(⊥‘𝐻)))
232adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝐻C )
2423, 3syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝐻S )
25 shel 27914 . . . . . . . . . . 11 ((𝐻S𝑥𝐻) → 𝑥 ∈ ℋ)
2624, 11, 25syl2anc 692 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝑥 ∈ ℋ)
2724, 5syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → (⊥‘𝐻) ∈ S )
28 shel 27914 . . . . . . . . . . 11 (((⊥‘𝐻) ∈ S𝑦 ∈ (⊥‘𝐻)) → 𝑦 ∈ ℋ)
2927, 12, 28syl2anc 692 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝑦 ∈ ℋ)
30 ax-hvcom 27704 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
3126, 29, 30syl2anc 692 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
3210, 31eqtrd 2655 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝐴 = (𝑦 + 𝑥))
33 rspe 2997 . . . . . . . 8 ((𝑥 ∈ (⊥‘(⊥‘𝐻)) ∧ 𝐴 = (𝑦 + 𝑥)) → ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 + 𝑥))
3422, 32, 33syl2anc 692 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 + 𝑥))
35 choccl 28011 . . . . . . . . . 10 (𝐻C → (⊥‘𝐻) ∈ C )
362, 35syl 17 . . . . . . . . 9 (𝜑 → (⊥‘𝐻) ∈ C )
37 shocsh 27989 . . . . . . . . . . . . 13 ((⊥‘𝐻) ∈ S → (⊥‘(⊥‘𝐻)) ∈ S )
386, 37syl 17 . . . . . . . . . . . 12 (𝜑 → (⊥‘(⊥‘𝐻)) ∈ S )
39 shless 28064 . . . . . . . . . . . 12 (((𝐻S ∧ (⊥‘(⊥‘𝐻)) ∈ S ∧ (⊥‘𝐻) ∈ S ) ∧ 𝐻 ⊆ (⊥‘(⊥‘𝐻))) → (𝐻 + (⊥‘𝐻)) ⊆ ((⊥‘(⊥‘𝐻)) + (⊥‘𝐻)))
404, 38, 6, 20, 39syl31anc 1326 . . . . . . . . . . 11 (𝜑 → (𝐻 + (⊥‘𝐻)) ⊆ ((⊥‘(⊥‘𝐻)) + (⊥‘𝐻)))
41 shscom 28024 . . . . . . . . . . . 12 (((⊥‘𝐻) ∈ S ∧ (⊥‘(⊥‘𝐻)) ∈ S ) → ((⊥‘𝐻) + (⊥‘(⊥‘𝐻))) = ((⊥‘(⊥‘𝐻)) + (⊥‘𝐻)))
426, 38, 41syl2anc 692 . . . . . . . . . . 11 (𝜑 → ((⊥‘𝐻) + (⊥‘(⊥‘𝐻))) = ((⊥‘(⊥‘𝐻)) + (⊥‘𝐻)))
4340, 42sseqtr4d 3621 . . . . . . . . . 10 (𝜑 → (𝐻 + (⊥‘𝐻)) ⊆ ((⊥‘𝐻) + (⊥‘(⊥‘𝐻))))
4443, 1sseldd 3584 . . . . . . . . 9 (𝜑𝐴 ∈ ((⊥‘𝐻) + (⊥‘(⊥‘𝐻))))
45 pjpreeq 28103 . . . . . . . . 9 (((⊥‘𝐻) ∈ C𝐴 ∈ ((⊥‘𝐻) + (⊥‘(⊥‘𝐻)))) → (((proj‘(⊥‘𝐻))‘𝐴) = 𝑦 ↔ (𝑦 ∈ (⊥‘𝐻) ∧ ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 + 𝑥))))
4636, 44, 45syl2anc 692 . . . . . . . 8 (𝜑 → (((proj‘(⊥‘𝐻))‘𝐴) = 𝑦 ↔ (𝑦 ∈ (⊥‘𝐻) ∧ ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 + 𝑥))))
4746adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → (((proj‘(⊥‘𝐻))‘𝐴) = 𝑦 ↔ (𝑦 ∈ (⊥‘𝐻) ∧ ∃𝑥 ∈ (⊥‘(⊥‘𝐻))𝐴 = (𝑦 + 𝑥))))
4812, 34, 47mpbir2and 956 . . . . . 6 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → ((proj‘(⊥‘𝐻))‘𝐴) = 𝑦)
4918, 48oveq12d 6622 . . . . 5 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → (((proj𝐻)‘𝐴) + ((proj‘(⊥‘𝐻))‘𝐴)) = (𝑥 + 𝑦))
5010, 49eqtr4d 2658 . . . 4 ((𝜑 ∧ ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) ∧ 𝐴 = (𝑥 + 𝑦))) → 𝐴 = (((proj𝐻)‘𝐴) + ((proj‘(⊥‘𝐻))‘𝐴)))
5150exp32 630 . . 3 (𝜑 → ((𝑥𝐻𝑦 ∈ (⊥‘𝐻)) → (𝐴 = (𝑥 + 𝑦) → 𝐴 = (((proj𝐻)‘𝐴) + ((proj‘(⊥‘𝐻))‘𝐴)))))
5251rexlimdvv 3030 . 2 (𝜑 → (∃𝑥𝐻𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 + 𝑦) → 𝐴 = (((proj𝐻)‘𝐴) + ((proj‘(⊥‘𝐻))‘𝐴))))
539, 52mpd 15 1 (𝜑𝐴 = (((proj𝐻)‘𝐴) + ((proj‘(⊥‘𝐻))‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wrex 2908  wss 3555  cfv 5847  (class class class)co 6604  chil 27622   + cva 27623   S csh 27631   C cch 27632  cort 27633   + cph 27634  projcpjh 27640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960  ax-hilex 27702  ax-hfvadd 27703  ax-hvcom 27704  ax-hvass 27705  ax-hv0cl 27706  ax-hvaddid 27707  ax-hfvmul 27708  ax-hvmulid 27709  ax-hvmulass 27710  ax-hvdistr1 27711  ax-hvdistr2 27712  ax-hvmul0 27713  ax-hfi 27782  ax-his1 27785  ax-his2 27786  ax-his3 27787  ax-his4 27788  ax-hcompl 27905
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-icc 12124  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cn 20941  df-cnp 20942  df-lm 20943  df-haus 21029  df-tx 21275  df-hmeo 21468  df-xms 22035  df-ms 22036  df-tms 22037  df-cau 22962  df-grpo 27193  df-gid 27194  df-ginv 27195  df-gdiv 27196  df-ablo 27245  df-vc 27260  df-nv 27293  df-va 27296  df-ba 27297  df-sm 27298  df-0v 27299  df-vs 27300  df-nmcv 27301  df-ims 27302  df-dip 27402  df-hnorm 27671  df-hvsub 27674  df-hlim 27675  df-hcau 27676  df-sh 27910  df-ch 27924  df-oc 27955  df-ch0 27956  df-shs 28013  df-pjh 28100
This theorem is referenced by:  axpjpj  28125
  Copyright terms: Public domain W3C validator