HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjrni Structured version   Visualization version   GIF version

Theorem pjrni 27747
Description: The range of a projection. Part of Theorem 26.2 of [Halmos] p. 44. (Contributed by NM, 30-Oct-1999.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
Hypothesis
Ref Expression
pjfn.1 𝐻C
Assertion
Ref Expression
pjrni ran (proj𝐻) = 𝐻

Proof of Theorem pjrni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pjfn.1 . . . . 5 𝐻C
21pjfni 27746 . . . 4 (proj𝐻) Fn ℋ
31pjcli 27462 . . . . 5 (𝑥 ∈ ℋ → ((proj𝐻)‘𝑥) ∈ 𝐻)
43rgen 2901 . . . 4 𝑥 ∈ ℋ ((proj𝐻)‘𝑥) ∈ 𝐻
5 ffnfv 6276 . . . 4 ((proj𝐻): ℋ⟶𝐻 ↔ ((proj𝐻) Fn ℋ ∧ ∀𝑥 ∈ ℋ ((proj𝐻)‘𝑥) ∈ 𝐻))
62, 4, 5mpbir2an 956 . . 3 (proj𝐻): ℋ⟶𝐻
7 frn 5948 . . 3 ((proj𝐻): ℋ⟶𝐻 → ran (proj𝐻) ⊆ 𝐻)
86, 7ax-mp 5 . 2 ran (proj𝐻) ⊆ 𝐻
9 pjid 27740 . . . . 5 ((𝐻C𝑦𝐻) → ((proj𝐻)‘𝑦) = 𝑦)
101, 9mpan 701 . . . 4 (𝑦𝐻 → ((proj𝐻)‘𝑦) = 𝑦)
111cheli 27275 . . . . 5 (𝑦𝐻𝑦 ∈ ℋ)
12 fnfvelrn 6245 . . . . 5 (((proj𝐻) Fn ℋ ∧ 𝑦 ∈ ℋ) → ((proj𝐻)‘𝑦) ∈ ran (proj𝐻))
132, 11, 12sylancr 693 . . . 4 (𝑦𝐻 → ((proj𝐻)‘𝑦) ∈ ran (proj𝐻))
1410, 13eqeltrrd 2684 . . 3 (𝑦𝐻𝑦 ∈ ran (proj𝐻))
1514ssriv 3567 . 2 𝐻 ⊆ ran (proj𝐻)
168, 15eqssi 3579 1 ran (proj𝐻) = 𝐻
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  wcel 1975  wral 2891  wss 3535  ran crn 5025   Fn wfn 5781  wf 5782  cfv 5786  chil 26962   C cch 26972  projcpjh 26980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cc 9113  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866  ax-addf 9867  ax-mulf 9868  ax-hilex 27042  ax-hfvadd 27043  ax-hvcom 27044  ax-hvass 27045  ax-hv0cl 27046  ax-hvaddid 27047  ax-hfvmul 27048  ax-hvmulid 27049  ax-hvmulass 27050  ax-hvdistr1 27051  ax-hvdistr2 27052  ax-hvmul0 27053  ax-hfi 27122  ax-his1 27125  ax-his2 27126  ax-his3 27127  ax-his4 27128  ax-hcompl 27245
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-iin 4448  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-of 6768  df-om 6931  df-1st 7032  df-2nd 7033  df-supp 7156  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-2o 7421  df-oadd 7424  df-omul 7425  df-er 7602  df-map 7719  df-pm 7720  df-ixp 7768  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-fsupp 8132  df-fi 8173  df-sup 8204  df-inf 8205  df-oi 8271  df-card 8621  df-acn 8624  df-cda 8846  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-4 10924  df-5 10925  df-6 10926  df-7 10927  df-8 10928  df-9 10929  df-n0 11136  df-z 11207  df-dec 11322  df-uz 11516  df-q 11617  df-rp 11661  df-xneg 11774  df-xadd 11775  df-xmul 11776  df-ioo 12002  df-ico 12004  df-icc 12005  df-fz 12149  df-fzo 12286  df-fl 12406  df-seq 12615  df-exp 12674  df-hash 12931  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-clim 14009  df-rlim 14010  df-sum 14207  df-struct 15639  df-ndx 15640  df-slot 15641  df-base 15642  df-sets 15643  df-ress 15644  df-plusg 15723  df-mulr 15724  df-starv 15725  df-sca 15726  df-vsca 15727  df-ip 15728  df-tset 15729  df-ple 15730  df-ds 15733  df-unif 15734  df-hom 15735  df-cco 15736  df-rest 15848  df-topn 15849  df-0g 15867  df-gsum 15868  df-topgen 15869  df-pt 15870  df-prds 15873  df-xrs 15927  df-qtop 15932  df-imas 15933  df-xps 15935  df-mre 16011  df-mrc 16012  df-acs 16014  df-mgm 17007  df-sgrp 17049  df-mnd 17060  df-submnd 17101  df-mulg 17306  df-cntz 17515  df-cmn 17960  df-psmet 19501  df-xmet 19502  df-met 19503  df-bl 19504  df-mopn 19505  df-fbas 19506  df-fg 19507  df-cnfld 19510  df-top 20459  df-bases 20460  df-topon 20461  df-topsp 20462  df-cld 20571  df-ntr 20572  df-cls 20573  df-nei 20650  df-cn 20779  df-cnp 20780  df-lm 20781  df-haus 20867  df-tx 21113  df-hmeo 21306  df-fil 21398  df-fm 21490  df-flim 21491  df-flf 21492  df-xms 21872  df-ms 21873  df-tms 21874  df-cfil 22775  df-cau 22776  df-cmet 22777  df-grpo 26493  df-gid 26494  df-ginv 26495  df-gdiv 26496  df-ablo 26548  df-vc 26563  df-nv 26611  df-va 26614  df-ba 26615  df-sm 26616  df-0v 26617  df-vs 26618  df-nmcv 26619  df-ims 26620  df-dip 26737  df-ssp 26761  df-ph 26854  df-cbn 26905  df-hnorm 27011  df-hba 27012  df-hvsub 27014  df-hlim 27015  df-hcau 27016  df-sh 27250  df-ch 27264  df-oc 27295  df-ch0 27296  df-shs 27353  df-pjh 27440
This theorem is referenced by:  pjfoi  27748  pjfi  27749  pj11i  27756  pjss1coi  28208  pjimai  28221  pj3i  28253
  Copyright terms: Public domain W3C validator