Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjspansn Structured version   Visualization version   GIF version

Theorem pjspansn 28306
 Description: A projection on the span of a singleton. (The proof ws shortened by Mario Carneiro, 15-Dec-2013.) (Contributed by NM, 28-May-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
pjspansn ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ((proj‘(span‘{𝐴}))‘𝐵) = (((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))

Proof of Theorem pjspansn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 spansnch 28289 . . . 4 (𝐴 ∈ ℋ → (span‘{𝐴}) ∈ C )
213ad2ant1 1080 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → (span‘{𝐴}) ∈ C )
3 simp2 1060 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℋ)
4 eqid 2621 . . . . 5 ((proj‘(span‘{𝐴}))‘𝐵) = ((proj‘(span‘{𝐴}))‘𝐵)
5 pjeq 28128 . . . . 5 (((span‘{𝐴}) ∈ C𝐵 ∈ ℋ) → (((proj‘(span‘{𝐴}))‘𝐵) = ((proj‘(span‘{𝐴}))‘𝐵) ↔ (((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴}) ∧ ∃𝑦 ∈ (⊥‘(span‘{𝐴}))𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))))
64, 5mpbii 223 . . . 4 (((span‘{𝐴}) ∈ C𝐵 ∈ ℋ) → (((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴}) ∧ ∃𝑦 ∈ (⊥‘(span‘{𝐴}))𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦)))
76simprd 479 . . 3 (((span‘{𝐴}) ∈ C𝐵 ∈ ℋ) → ∃𝑦 ∈ (⊥‘(span‘{𝐴}))𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))
82, 3, 7syl2anc 692 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ∃𝑦 ∈ (⊥‘(span‘{𝐴}))𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))
9 oveq1 6617 . . . . . . 7 (𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) → (𝐵 ·ih 𝐴) = ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴))
109ad2antll 764 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → (𝐵 ·ih 𝐴) = ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴))
11 pjhcl 28130 . . . . . . . . . . 11 (((span‘{𝐴}) ∈ C𝐵 ∈ ℋ) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ ℋ)
122, 3, 11syl2anc 692 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ ℋ)
1312adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ ℋ)
14 choccl 28035 . . . . . . . . . . . 12 ((span‘{𝐴}) ∈ C → (⊥‘(span‘{𝐴})) ∈ C )
151, 14syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (⊥‘(span‘{𝐴})) ∈ C )
16153ad2ant1 1080 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → (⊥‘(span‘{𝐴})) ∈ C )
17 chel 27957 . . . . . . . . . 10 (((⊥‘(span‘{𝐴})) ∈ C𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝑦 ∈ ℋ)
1816, 17sylan 488 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝑦 ∈ ℋ)
19 simpl1 1062 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝐴 ∈ ℋ)
20 ax-his2 27810 . . . . . . . . 9 ((((proj‘(span‘{𝐴}))‘𝐵) ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴) = ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) + (𝑦 ·ih 𝐴)))
2113, 18, 19, 20syl3anc 1323 . . . . . . . 8 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴) = ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) + (𝑦 ·ih 𝐴)))
22 spansnsh 28290 . . . . . . . . . . . . 13 (𝐴 ∈ ℋ → (span‘{𝐴}) ∈ S )
2322adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (span‘{𝐴}) ∈ S )
24 spansnid 28292 . . . . . . . . . . . . 13 (𝐴 ∈ ℋ → 𝐴 ∈ (span‘{𝐴}))
2524adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝐴 ∈ (span‘{𝐴}))
26 simpr 477 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝑦 ∈ (⊥‘(span‘{𝐴})))
27 shocorth 28021 . . . . . . . . . . . . 13 ((span‘{𝐴}) ∈ S → ((𝐴 ∈ (span‘{𝐴}) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (𝐴 ·ih 𝑦) = 0))
28273impib 1259 . . . . . . . . . . . 12 (((span‘{𝐴}) ∈ S𝐴 ∈ (span‘{𝐴}) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (𝐴 ·ih 𝑦) = 0)
2923, 25, 26, 28syl3anc 1323 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (𝐴 ·ih 𝑦) = 0)
3015, 17sylan 488 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → 𝑦 ∈ ℋ)
31 orthcom 27835 . . . . . . . . . . . 12 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝐴 ·ih 𝑦) = 0 ↔ (𝑦 ·ih 𝐴) = 0))
3230, 31syldan 487 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((𝐴 ·ih 𝑦) = 0 ↔ (𝑦 ·ih 𝐴) = 0))
3329, 32mpbid 222 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (𝑦 ·ih 𝐴) = 0)
34333ad2antl1 1221 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (𝑦 ·ih 𝐴) = 0)
3534oveq2d 6626 . . . . . . . 8 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) + (𝑦 ·ih 𝐴)) = ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) + 0))
36 hicl 27807 . . . . . . . . . 10 ((((proj‘(span‘{𝐴}))‘𝐵) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) ∈ ℂ)
3713, 19, 36syl2anc 692 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) ∈ ℂ)
3837addid1d 10188 . . . . . . . 8 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) + 0) = (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴))
3921, 35, 383eqtrd 2659 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ 𝑦 ∈ (⊥‘(span‘{𝐴}))) → ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴) = (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴))
4039adantrr 752 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → ((((proj‘(span‘{𝐴}))‘𝐵) + 𝑦) ·ih 𝐴) = (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴))
4110, 40eqtrd 2655 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → (𝐵 ·ih 𝐴) = (((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴))
4241oveq1d 6625 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → ((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) = ((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) / ((norm𝐴)↑2)))
4342oveq1d 6625 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → (((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴) = (((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))
44 simpl1 1062 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → 𝐴 ∈ ℋ)
45 simpl3 1064 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → 𝐴 ≠ 0)
46 axpjcl 28129 . . . . . 6 (((span‘{𝐴}) ∈ C𝐵 ∈ ℋ) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴}))
472, 3, 46syl2anc 692 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴}))
4847adantr 481 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → ((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴}))
49 normcan 28305 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ∧ ((proj‘(span‘{𝐴}))‘𝐵) ∈ (span‘{𝐴})) → (((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴) = ((proj‘(span‘{𝐴}))‘𝐵))
5044, 45, 48, 49syl3anc 1323 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → (((((proj‘(span‘{𝐴}))‘𝐵) ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴) = ((proj‘(span‘{𝐴}))‘𝐵))
5143, 50eqtr2d 2656 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) ∧ (𝑦 ∈ (⊥‘(span‘{𝐴})) ∧ 𝐵 = (((proj‘(span‘{𝐴}))‘𝐵) + 𝑦))) → ((proj‘(span‘{𝐴}))‘𝐵) = (((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))
528, 51rexlimddv 3029 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0) → ((proj‘(span‘{𝐴}))‘𝐵) = (((𝐵 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∃wrex 2908  {csn 4153  ‘cfv 5852  (class class class)co 6610  ℂcc 9886  0cc0 9888   + caddc 9891   / cdiv 10636  2c2 11022  ↑cexp 12808   ℋchil 27646   +ℎ cva 27647   ·ℎ csm 27648   ·ih csp 27649  normℎcno 27650  0ℎc0v 27651   Sℋ csh 27655   Cℋ cch 27656  ⊥cort 27657  spancspn 27659  projℎcpjh 27664 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cc 9209  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968  ax-hilex 27726  ax-hfvadd 27727  ax-hvcom 27728  ax-hvass 27729  ax-hv0cl 27730  ax-hvaddid 27731  ax-hfvmul 27732  ax-hvmulid 27733  ax-hvmulass 27734  ax-hvdistr1 27735  ax-hvdistr2 27736  ax-hvmul0 27737  ax-hfi 27806  ax-his1 27809  ax-his2 27810  ax-his3 27811  ax-his4 27812  ax-hcompl 27929 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-omul 7517  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-acn 8720  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-rlim 14162  df-sum 14359  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-pt 16037  df-prds 16040  df-xrs 16094  df-qtop 16099  df-imas 16100  df-xps 16102  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-mulg 17473  df-cntz 17682  df-cmn 18127  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-fbas 19675  df-fg 19676  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cld 20746  df-ntr 20747  df-cls 20748  df-nei 20825  df-cn 20954  df-cnp 20955  df-lm 20956  df-haus 21042  df-tx 21288  df-hmeo 21481  df-fil 21573  df-fm 21665  df-flim 21666  df-flf 21667  df-xms 22048  df-ms 22049  df-tms 22050  df-cfil 22976  df-cau 22977  df-cmet 22978  df-grpo 27217  df-gid 27218  df-ginv 27219  df-gdiv 27220  df-ablo 27269  df-vc 27284  df-nv 27317  df-va 27320  df-ba 27321  df-sm 27322  df-0v 27323  df-vs 27324  df-nmcv 27325  df-ims 27326  df-dip 27426  df-ssp 27447  df-ph 27538  df-cbn 27589  df-hnorm 27695  df-hba 27696  df-hvsub 27698  df-hlim 27699  df-hcau 27700  df-sh 27934  df-ch 27948  df-oc 27979  df-ch0 27980  df-shs 28037  df-span 28038  df-pjh 28124 This theorem is referenced by:  kbpj  28685
 Copyright terms: Public domain W3C validator