MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjth Structured version   Visualization version   GIF version

Theorem pjth 23430
Description: Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.)
Hypotheses
Ref Expression
pjth.v 𝑉 = (Base‘𝑊)
pjth.s = (LSSum‘𝑊)
pjth.o 𝑂 = (ocv‘𝑊)
pjth.j 𝐽 = (TopOpen‘𝑊)
pjth.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
pjth ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑈 (𝑂𝑈)) = 𝑉)

Proof of Theorem pjth
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hlphl 23381 . . . . . 6 (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil)
213ad2ant1 1128 . . . . 5 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → 𝑊 ∈ PreHil)
3 phllmod 20197 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
42, 3syl 17 . . . 4 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → 𝑊 ∈ LMod)
5 simp2 1132 . . . 4 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → 𝑈𝐿)
6 pjth.v . . . . . . 7 𝑉 = (Base‘𝑊)
7 pjth.l . . . . . . 7 𝐿 = (LSubSp‘𝑊)
86, 7lssss 19159 . . . . . 6 (𝑈𝐿𝑈𝑉)
983ad2ant2 1129 . . . . 5 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → 𝑈𝑉)
10 pjth.o . . . . . 6 𝑂 = (ocv‘𝑊)
116, 10, 7ocvlss 20238 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑉) → (𝑂𝑈) ∈ 𝐿)
122, 9, 11syl2anc 696 . . . 4 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑂𝑈) ∈ 𝐿)
13 pjth.s . . . . 5 = (LSSum‘𝑊)
147, 13lsmcl 19305 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿 ∧ (𝑂𝑈) ∈ 𝐿) → (𝑈 (𝑂𝑈)) ∈ 𝐿)
154, 5, 12, 14syl3anc 1477 . . 3 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑈 (𝑂𝑈)) ∈ 𝐿)
166, 7lssss 19159 . . 3 ((𝑈 (𝑂𝑈)) ∈ 𝐿 → (𝑈 (𝑂𝑈)) ⊆ 𝑉)
1715, 16syl 17 . 2 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑈 (𝑂𝑈)) ⊆ 𝑉)
18 eqid 2760 . . . . 5 (norm‘𝑊) = (norm‘𝑊)
19 eqid 2760 . . . . 5 (+g𝑊) = (+g𝑊)
20 eqid 2760 . . . . 5 (-g𝑊) = (-g𝑊)
21 eqid 2760 . . . . 5 (·𝑖𝑊) = (·𝑖𝑊)
22 simpl1 1228 . . . . 5 (((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥𝑉) → 𝑊 ∈ ℂHil)
23 simpl2 1230 . . . . 5 (((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥𝑉) → 𝑈𝐿)
24 simpr 479 . . . . 5 (((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥𝑉) → 𝑥𝑉)
25 pjth.j . . . . 5 𝐽 = (TopOpen‘𝑊)
26 simpl3 1232 . . . . 5 (((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥𝑉) → 𝑈 ∈ (Clsd‘𝐽))
276, 18, 19, 20, 21, 7, 22, 23, 24, 25, 13, 10, 26pjthlem2 23429 . . . 4 (((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥𝑉) → 𝑥 ∈ (𝑈 (𝑂𝑈)))
2827ex 449 . . 3 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑥𝑉𝑥 ∈ (𝑈 (𝑂𝑈))))
2928ssrdv 3750 . 2 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → 𝑉 ⊆ (𝑈 (𝑂𝑈)))
3017, 29eqssd 3761 1 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑈 (𝑂𝑈)) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  wss 3715  cfv 6049  (class class class)co 6814  Basecbs 16079  +gcplusg 16163  ·𝑖cip 16168  TopOpenctopn 16304  -gcsg 17645  LSSumclsm 18269  LModclmod 19085  LSubSpclss 19154  PreHilcphl 20191  ocvcocv 20226  Clsdccld 21042  normcnm 22602  ℂHilchl 23351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-submnd 17557  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mulg 17762  df-subg 17812  df-ghm 17879  df-cntz 17970  df-lsm 18271  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-oppr 18843  df-dvdsr 18861  df-unit 18862  df-invr 18892  df-dvr 18903  df-rnghom 18937  df-drng 18971  df-subrg 19000  df-staf 19067  df-srng 19068  df-lmod 19087  df-lss 19155  df-lmhm 19244  df-lvec 19325  df-sra 19394  df-rgmod 19395  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-phl 20193  df-ocv 20229  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-cn 21253  df-cnp 21254  df-haus 21341  df-cmp 21412  df-tx 21587  df-hmeo 21780  df-fil 21871  df-flim 21964  df-fcls 21966  df-xms 22346  df-ms 22347  df-tms 22348  df-nm 22608  df-ngp 22609  df-nlm 22612  df-cncf 22902  df-clm 23083  df-cph 23188  df-cfil 23273  df-cmet 23275  df-cms 23352  df-bn 23353  df-hl 23354
This theorem is referenced by:  pjth2  23431
  Copyright terms: Public domain W3C validator