Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42lem1N Structured version   Visualization version   GIF version

Theorem pl42lem1N 34079
Description: Lemma for pl42N 34083. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42lem.b 𝐵 = (Base‘𝐾)
pl42lem.l = (le‘𝐾)
pl42lem.j = (join‘𝐾)
pl42lem.m = (meet‘𝐾)
pl42lem.o = (oc‘𝐾)
pl42lem.f 𝐹 = (pmap‘𝐾)
pl42lem.p + = (+𝑃𝐾)
Assertion
Ref Expression
pl42lem1N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊)) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) = (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉))))

Proof of Theorem pl42lem1N
StepHypRef Expression
1 simp11 1083 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝐾 ∈ HL)
2 hllat 33464 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
31, 2syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝐾 ∈ Lat)
4 simp12 1084 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑋𝐵)
5 simp13 1085 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑌𝐵)
6 pl42lem.b . . . . . . . 8 𝐵 = (Base‘𝐾)
7 pl42lem.j . . . . . . . 8 = (join‘𝐾)
86, 7latjcl 16820 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
93, 4, 5, 8syl3anc 1317 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝑋 𝑌) ∈ 𝐵)
10 simp21 1086 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑍𝐵)
11 pl42lem.m . . . . . . 7 = (meet‘𝐾)
126, 11latmcl 16821 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
133, 9, 10, 12syl3anc 1317 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ((𝑋 𝑌) 𝑍) ∈ 𝐵)
14 simp22 1087 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑊𝐵)
156, 7latjcl 16820 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵𝑊𝐵) → (((𝑋 𝑌) 𝑍) 𝑊) ∈ 𝐵)
163, 13, 14, 15syl3anc 1317 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (((𝑋 𝑌) 𝑍) 𝑊) ∈ 𝐵)
17 simp23 1088 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑉𝐵)
18 eqid 2609 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
19 pl42lem.f . . . . 5 𝐹 = (pmap‘𝐾)
206, 11, 18, 19pmapmeet 33873 . . . 4 ((𝐾 ∈ HL ∧ (((𝑋 𝑌) 𝑍) 𝑊) ∈ 𝐵𝑉𝐵) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) = ((𝐹‘(((𝑋 𝑌) 𝑍) 𝑊)) ∩ (𝐹𝑉)))
211, 16, 17, 20syl3anc 1317 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) = ((𝐹‘(((𝑋 𝑌) 𝑍) 𝑊)) ∩ (𝐹𝑉)))
22 pl42lem.l . . . . . . 7 = (le‘𝐾)
23 hlop 33463 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
241, 23syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝐾 ∈ OP)
25 pl42lem.o . . . . . . . . 9 = (oc‘𝐾)
266, 25opoccl 33295 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑊𝐵) → ( 𝑊) ∈ 𝐵)
2724, 14, 26syl2anc 690 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ( 𝑊) ∈ 𝐵)
286, 22, 11latmle2 16846 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) 𝑍)
293, 9, 10, 28syl3anc 1317 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ((𝑋 𝑌) 𝑍) 𝑍)
30 simp3r 1082 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑍 ( 𝑊))
316, 22, 3, 13, 10, 27, 29, 30lattrd 16827 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ((𝑋 𝑌) 𝑍) ( 𝑊))
32 pl42lem.p . . . . . . 7 + = (+𝑃𝐾)
336, 22, 7, 19, 25, 32pmapojoinN 34068 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑋 𝑌) 𝑍) ∈ 𝐵𝑊𝐵) ∧ ((𝑋 𝑌) 𝑍) ( 𝑊)) → (𝐹‘(((𝑋 𝑌) 𝑍) 𝑊)) = ((𝐹‘((𝑋 𝑌) 𝑍)) + (𝐹𝑊)))
341, 13, 14, 31, 33syl31anc 1320 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘(((𝑋 𝑌) 𝑍) 𝑊)) = ((𝐹‘((𝑋 𝑌) 𝑍)) + (𝐹𝑊)))
356, 11, 18, 19pmapmeet 33873 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑍𝐵) → (𝐹‘((𝑋 𝑌) 𝑍)) = ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)))
361, 9, 10, 35syl3anc 1317 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘((𝑋 𝑌) 𝑍)) = ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)))
37 simp3l 1081 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → 𝑋 ( 𝑌))
386, 22, 7, 19, 25, 32pmapojoinN 34068 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))
391, 4, 5, 37, 38syl31anc 1320 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) + (𝐹𝑌)))
4039ineq1d 3774 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ((𝐹‘(𝑋 𝑌)) ∩ (𝐹𝑍)) = (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)))
4136, 40eqtrd 2643 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘((𝑋 𝑌) 𝑍)) = (((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)))
4241oveq1d 6542 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ((𝐹‘((𝑋 𝑌) 𝑍)) + (𝐹𝑊)) = ((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)))
4334, 42eqtrd 2643 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘(((𝑋 𝑌) 𝑍) 𝑊)) = ((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)))
4443ineq1d 3774 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → ((𝐹‘(((𝑋 𝑌) 𝑍) 𝑊)) ∩ (𝐹𝑉)) = (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉)))
4521, 44eqtrd 2643 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵) ∧ (𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊))) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) = (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉)))
46453expia 1258 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵𝑉𝐵)) → ((𝑋 ( 𝑌) ∧ 𝑍 ( 𝑊)) → (𝐹‘((((𝑋 𝑌) 𝑍) 𝑊) 𝑉)) = (((((𝐹𝑋) + (𝐹𝑌)) ∩ (𝐹𝑍)) + (𝐹𝑊)) ∩ (𝐹𝑉))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  cin 3538   class class class wbr 4577  cfv 5790  (class class class)co 6527  Basecbs 15641  lecple 15721  occoc 15722  joincjn 16713  meetcmee 16714  Latclat 16814  OPcops 33273  Atomscatm 33364  HLchlt 33451  pmapcpmap 33597  +𝑃cpadd 33895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-riotaBAD 33053
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7036  df-2nd 7037  df-undef 7263  df-preset 16697  df-poset 16715  df-plt 16727  df-lub 16743  df-glb 16744  df-join 16745  df-meet 16746  df-p0 16808  df-p1 16809  df-lat 16815  df-clat 16877  df-oposet 33277  df-ol 33279  df-oml 33280  df-covers 33367  df-ats 33368  df-atl 33399  df-cvlat 33423  df-hlat 33452  df-psubsp 33603  df-pmap 33604  df-padd 33896  df-polarityN 34003  df-psubclN 34035
This theorem is referenced by:  pl42lem4N  34082
  Copyright terms: Public domain W3C validator