MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltle Structured version   Visualization version   GIF version

Theorem pltle 16882
Description: Less-than implies less-than-or-equal. (pssss 3680 analog.) (Contributed by NM, 4-Dec-2011.)
Hypotheses
Ref Expression
pltval.l = (le‘𝐾)
pltval.s < = (lt‘𝐾)
Assertion
Ref Expression
pltle ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌𝑋 𝑌))

Proof of Theorem pltle
StepHypRef Expression
1 pltval.l . . . 4 = (le‘𝐾)
2 pltval.s . . . 4 < = (lt‘𝐾)
31, 2pltval 16881 . . 3 ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
43simprbda 652 . 2 (((𝐾𝐴𝑋𝐵𝑌𝐶) ∧ 𝑋 < 𝑌) → 𝑋 𝑌)
54ex 450 1 ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4613  cfv 5847  lecple 15869  ltcplt 16862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-iota 5810  df-fun 5849  df-fv 5855  df-plt 16879
This theorem is referenced by:  pleval2  16886  pltnlt  16889  pltn2lp  16890  plttr  16891  pospo  16894  ogrpaddlt  29503  isarchi3  29526  archirngz  29528  archiabllem2a  29533  orngsqr  29589  ornglmullt  29592  orngrmullt  29593  atnlt  34080  cvlcvr1  34106  hlrelat  34168  hlrelat3  34178  cvratlem  34187  atltcvr  34201  atlelt  34204  llnnlt  34289  lplnnle2at  34307  lplnnlt  34331  lvolnle3at  34348  lvolnltN  34384  cdlemblem  34559  cdlemb  34560  lhpexle1  34774
  Copyright terms: Public domain W3C validator