MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltle Structured version   Visualization version   GIF version

Theorem pltle 17182
Description: Less-than implies less-than-or-equal. (pssss 3844 analog.) (Contributed by NM, 4-Dec-2011.)
Hypotheses
Ref Expression
pltval.l = (le‘𝐾)
pltval.s < = (lt‘𝐾)
Assertion
Ref Expression
pltle ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌𝑋 𝑌))

Proof of Theorem pltle
StepHypRef Expression
1 pltval.l . . . 4 = (le‘𝐾)
2 pltval.s . . . 4 < = (lt‘𝐾)
31, 2pltval 17181 . . 3 ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
43simprbda 654 . 2 (((𝐾𝐴𝑋𝐵𝑌𝐶) ∧ 𝑋 < 𝑌) → 𝑋 𝑌)
54ex 449 1 ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1072   = wceq 1632  wcel 2139  wne 2932   class class class wbr 4804  cfv 6049  lecple 16170  ltcplt 17162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fv 6057  df-plt 17179
This theorem is referenced by:  pleval2  17186  pltnlt  17189  pltn2lp  17190  plttr  17191  pospo  17194  ogrpaddlt  30048  isarchi3  30071  archirngz  30073  archiabllem2a  30078  orngsqr  30134  ornglmullt  30137  orngrmullt  30138  atnlt  35121  cvlcvr1  35147  hlrelat  35209  hlrelat3  35219  cvratlem  35228  atltcvr  35242  atlelt  35245  llnnlt  35330  lplnnle2at  35348  lplnnlt  35372  lvolnle3at  35389  lvolnltN  35425  cdlemblem  35600  cdlemb  35601  lhpexle1  35815
  Copyright terms: Public domain W3C validator