![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pltnlt | Structured version Visualization version GIF version |
Description: The less-than relation implies the negation of its inverse. (Contributed by NM, 18-Oct-2011.) |
Ref | Expression |
---|---|
pltnlt.b | ⊢ 𝐵 = (Base‘𝐾) |
pltnlt.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
pltnlt | ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 < 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pltnlt.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2651 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | pltnlt.s | . . 3 ⊢ < = (lt‘𝐾) | |
4 | 1, 2, 3 | pltnle 17013 | . 2 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌(le‘𝐾)𝑋) |
5 | 2, 3 | pltle 17008 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 < 𝑋 → 𝑌(le‘𝐾)𝑋)) |
6 | 5 | 3com23 1291 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 < 𝑋 → 𝑌(le‘𝐾)𝑋)) |
7 | 6 | adantr 480 | . 2 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → (𝑌 < 𝑋 → 𝑌(le‘𝐾)𝑋)) |
8 | 4, 7 | mtod 189 | 1 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 < 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 ‘cfv 5926 Basecbs 15904 lecple 15995 Posetcpo 16987 ltcplt 16988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-preset 16975 df-poset 16993 df-plt 17005 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |