MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divalg Structured version   Visualization version   GIF version

Theorem ply1divalg 23808
Description: The division algorithm for univariate polynomials over a ring. For polynomials 𝐹, 𝐺 such that 𝐺 ≠ 0 and the leading coefficient of 𝐺 is a unit, there are unique polynomials 𝑞 and 𝑟 = 𝐹 − (𝐺 · 𝑞) such that the degree of 𝑟 is less than the degree of 𝐺. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
ply1divalg.p 𝑃 = (Poly1𝑅)
ply1divalg.d 𝐷 = ( deg1𝑅)
ply1divalg.b 𝐵 = (Base‘𝑃)
ply1divalg.m = (-g𝑃)
ply1divalg.z 0 = (0g𝑃)
ply1divalg.t = (.r𝑃)
ply1divalg.r1 (𝜑𝑅 ∈ Ring)
ply1divalg.f (𝜑𝐹𝐵)
ply1divalg.g1 (𝜑𝐺𝐵)
ply1divalg.g2 (𝜑𝐺0 )
ply1divalg.g3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈)
ply1divalg.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
ply1divalg (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
Distinct variable groups:   𝜑,𝑞   𝐵,𝑞   𝐷,𝑞   𝐹,𝑞   𝐺,𝑞   ,𝑞   𝑃,𝑞   𝑅,𝑞   ,𝑞   0 ,𝑞
Allowed substitution hint:   𝑈(𝑞)

Proof of Theorem ply1divalg
StepHypRef Expression
1 ply1divalg.p . . 3 𝑃 = (Poly1𝑅)
2 ply1divalg.d . . 3 𝐷 = ( deg1𝑅)
3 ply1divalg.b . . 3 𝐵 = (Base‘𝑃)
4 ply1divalg.m . . 3 = (-g𝑃)
5 ply1divalg.z . . 3 0 = (0g𝑃)
6 ply1divalg.t . . 3 = (.r𝑃)
7 ply1divalg.r1 . . 3 (𝜑𝑅 ∈ Ring)
8 ply1divalg.f . . 3 (𝜑𝐹𝐵)
9 ply1divalg.g1 . . 3 (𝜑𝐺𝐵)
10 ply1divalg.g2 . . 3 (𝜑𝐺0 )
11 eqid 2621 . . 3 (1r𝑅) = (1r𝑅)
12 eqid 2621 . . 3 (Base‘𝑅) = (Base‘𝑅)
13 eqid 2621 . . 3 (.r𝑅) = (.r𝑅)
14 ply1divalg.g3 . . . 4 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈)
15 ply1divalg.u . . . . 5 𝑈 = (Unit‘𝑅)
16 eqid 2621 . . . . 5 (invr𝑅) = (invr𝑅)
1715, 16, 12ringinvcl 18600 . . . 4 ((𝑅 ∈ Ring ∧ ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈) → ((invr𝑅)‘((coe1𝐺)‘(𝐷𝐺))) ∈ (Base‘𝑅))
187, 14, 17syl2anc 692 . . 3 (𝜑 → ((invr𝑅)‘((coe1𝐺)‘(𝐷𝐺))) ∈ (Base‘𝑅))
1915, 16, 13, 11unitrinv 18602 . . . 4 ((𝑅 ∈ Ring ∧ ((coe1𝐺)‘(𝐷𝐺)) ∈ 𝑈) → (((coe1𝐺)‘(𝐷𝐺))(.r𝑅)((invr𝑅)‘((coe1𝐺)‘(𝐷𝐺)))) = (1r𝑅))
207, 14, 19syl2anc 692 . . 3 (𝜑 → (((coe1𝐺)‘(𝐷𝐺))(.r𝑅)((invr𝑅)‘((coe1𝐺)‘(𝐷𝐺)))) = (1r𝑅))
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 20ply1divex 23807 . 2 (𝜑 → ∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
22 eqid 2621 . . . . . 6 (RLReg‘𝑅) = (RLReg‘𝑅)
2322, 15unitrrg 19215 . . . . 5 (𝑅 ∈ Ring → 𝑈 ⊆ (RLReg‘𝑅))
247, 23syl 17 . . . 4 (𝜑𝑈 ⊆ (RLReg‘𝑅))
2524, 14sseldd 3585 . . 3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (RLReg‘𝑅))
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 22ply1divmo 23806 . 2 (𝜑 → ∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
27 reu5 3148 . 2 (∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ↔ (∃𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺) ∧ ∃*𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺)))
2821, 26, 27sylanbrc 697 1 (𝜑 → ∃!𝑞𝐵 (𝐷‘(𝐹 (𝐺 𝑞))) < (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  wne 2790  wrex 2908  ∃!wreu 2909  ∃*wrmo 2910  wss 3556   class class class wbr 4615  cfv 5849  (class class class)co 6607   < clt 10021  Basecbs 15784  .rcmulr 15866  0gc0g 16024  -gcsg 17348  1rcur 18425  Ringcrg 18471  Unitcui 18563  invrcinvr 18595  RLRegcrlreg 19201  Poly1cpl1 19469  coe1cco1 19470   deg1 cdg1 23725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961  ax-addf 9962  ax-mulf 9963
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-ofr 6854  df-om 7016  df-1st 7116  df-2nd 7117  df-supp 7244  df-tpos 7300  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-2o 7509  df-oadd 7512  df-er 7690  df-map 7807  df-pm 7808  df-ixp 7856  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-fsupp 8223  df-sup 8295  df-oi 8362  df-card 8712  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-fz 12272  df-fzo 12410  df-seq 12745  df-hash 13061  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-starv 15880  df-sca 15881  df-vsca 15882  df-tset 15884  df-ple 15885  df-ds 15888  df-unif 15889  df-0g 16026  df-gsum 16027  df-mre 16170  df-mrc 16171  df-acs 16173  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-mhm 17259  df-submnd 17260  df-grp 17349  df-minusg 17350  df-sbg 17351  df-mulg 17465  df-subg 17515  df-ghm 17582  df-cntz 17674  df-cmn 18119  df-abl 18120  df-mgp 18414  df-ur 18426  df-ring 18473  df-cring 18474  df-oppr 18547  df-dvdsr 18565  df-unit 18566  df-invr 18596  df-subrg 18702  df-lmod 18789  df-lss 18855  df-rlreg 19205  df-psr 19278  df-mvr 19279  df-mpl 19280  df-opsr 19282  df-psr1 19472  df-vr1 19473  df-ply1 19474  df-coe1 19475  df-cnfld 19669  df-mdeg 23726  df-deg1 23727
This theorem is referenced by:  ply1divalg2  23809
  Copyright terms: Public domain W3C validator